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FAULT TOLERANT OPTIMAL CONTROL

by

Howard Jay Chizeck

Submitted to the Department of Electrical Engineering and
Computer Science on August 23, 1982 in partial fulfillment

of the requirements for the
Degree of Doctor of Science

ABSTRACT

The control of dynamic systems subject to abrupt, state-dependent
structural changes such as component failures, at random times, is
considered. This investigation is motivated by the need for design
techniques that yield fault-tolerant systems, in the sense that
they can perform satisfactorily despite untoward events. This work
concentrates on the tradeoffs between good performance and reliability
requirements.

The approach used is to formulate discrete-time nonlinear
stochastic control problems that capture some of the issues of
fault tolerant control, and to analyze the behavior of the
controllers obtained by solving these problems.

These problems are approached using dynamic programming methods.
A preliminary result is the derivation for discrete-time noiseless
problems with Markovian structure, results analogous to existing
results in continuous time. In addition necessary and sufficient
conditions for the existence of a steady-state controller yielding
finite expected cost are obtained.

This preliminary result is then used to attack the harder
problems of state-dependent structure changes. The basic method
used is to convert the state-dependent problems into the comparison
of a set of constrained (in the state) problems that have state-indep-
endent transition probabilities. First systems where the structure
transition probabilities depend upon the state in a piecewise--
constant way are considered. For scalar problems with no input
noise an algorithm is obtained that determines the optimal controller
off line, in advance of system operation. For problems with additional
structure this algorithm collapses into the simultaneous solution of
a set of coupled difference equations that are similar to Riccati
equations.

Two examples of such problems are considered in detail; one
involves performance and reliability goals that are conflicting and
in the other case they are commensurate. Both cases are analyzed to

- see how the optimal controller handles the tradeoff between these
goals. One controller action is to drive the state to the low cost
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goals. Then additive input noise, more general costs structures and
more general functional dependence of transition probabilities on
the state are considered. The additve noise changes the problem in
a fundamental way since the controller cannot position the state with
certainty. However an algorithm that yileds the optimal controller
can be obtained and qualitative properties of the controller can
be analyzed.

Finally severai extensions of these problems are considered.

Thesis Supervisor: Alan S. Willsky

Title: Associate Professor of Electrical Engineering and
Computer Science.
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INTRODUCTION AND BACKGROUND



1 i. INTRODUCTION

This thesis considers the control of dynamic systems that

experience abrupt, structural changes at random times. These changes

are caused by phenomena such as component failures and repairs, and

large environmental disturbances.

This document is divided into five parts. Part I contains

introductory, motivational and background material. It also presents

the perspective and conceptual basis of the work. A different class of

problems is considered in each of the next four parts. Part V closes

the thesis with a summary of results, concluding comments and suggestions

for further research.

1.1 Fault-Tolerant Systems

This thesis is motivated by the need for design techniques that

yield automatic systems that are fault-tolerant; that is, systems

which are are able to survive and adequately function despite the oc-

currence of component failures and other disruptions.1 '2

Some examples of situations where there is need for fault-tolerant

system designs are when:

1
The term fault-tolerance comes from digital computer design, where

fault refers to any disruption in the specified behavior of a system.
For example, see [ 5 1.
2 In (English translations of) Russian reliability theory literature,

a fault-tolerant system is any system having components that can be
- repaired. For example, see [33 1-

2



failures can jeopardize human lives, such as in

- life support systems,

- medical prosthetics,

- air traffic control systems,

- automated military systems,

- systems for handling hazardous material,

- electric power plants (especially nuclear),

- aircraft, manned spacecraft, trains, automobiles,
elevators and other mechanized conveyances.

failures have high monetary costs, such as in

- electric power distribution,

- automated manufacturing processes,

- communications systems.

repair or maintenance by humans is inadvisable or
impossible, such as in

- deep-space vehicles,

- deep-water systems,

- systems operating in extreme temperature,
radioactive, biohazardous or toxic environments.

We can identify three basic issues that must be taken into account

in the design of fault-tolerant systems. They are

* the type and level of redundancy used,

. the effects of failure-related uncertainties,

and

* conflicting system performance and reliability goals.

These design issues will be briefly discussed here.

3
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REDUNDANCY

Engineering systems have traditionally been made reliable

through the use of redundant components, so that individual failures

need not be catastrophic to the entire system (and by the use of

highly reliable components and assembly procedures so that failures

are unlikely). Redundant components are used to detect failures and

to compensate for them. There are essentially two kinds of

redundancy that can be used:

direct redundancy - Multiple copies of the same component

are used, in 'voting' schemes for failure detection

and as 'backups' for failure compensation.

" . functional redundancy - The system is designed so that

components and subsystems have overlapping

capabilities.

FAILURE- RELATED UNCERTAINTIES

Failure event uncertainties that must be addressed in fault-

tolerant system designs include:

plant uncertainties - Failure events change the system

state or dynamics in ways and at times that are

not known in advance.

detection uncertainties - The ability to detect, isolate

and estimate failures is usually imperfect. The

possibilities of incorrect failure detections and

decisions must be taken into account in the system

design.

4
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CONFLICTING GOALS

The goals of reliability and fault-tolerance may conflict with

other system performance objectives. Here are three classes of

costs associated with the attainment of fault-tolerance:

Fixed costs - Fault-tolerant designs usually require

additional or different hardware that is not needed

during fault-free operation. This extra equipment

may involve not only purchase costs but also degraded

system performance (e.g., extra weight in aircraft).

Hedging costs - The operation of a system so that it

is fault-tolerant may conflict with the optimal way

to operate the system in fault-free circumstances.

A cost, in terms of performance loss before failure,

is paid to improve the expected performance when

failures occur or to reduce the probability of failure.

Maintenance costs - Preventive maintenance (and ins-

pection) results in direct costs (for parts, labor,

etc.) as well as performance losses while maintenance

activities are undertaken.

FOCUS OF THIS WORK

This thesis concentrates on the second fault-tolerance issue

listed above - the tradeoffs and conflicts between reliability goals

and system performance. Specifically, we consider the attainment of

fault-tolerance through control strategies, rather than by direct

redundancy.

!i " 5



We seek control problem formulations that yield controller

designs which endow systems with fault-tolerance. An optimal fault-

tolerant controller should utilize all system capabilities and take

into account all known system limitations and failure likelihoods, so

as to achieve the best tradeoff between reliability and system

performance. We believe this to be an important step in the ongoing

development of theories and methods for fault-tolerant system design.

1.2 Fault-Tolerant Control

Fault-tolerant control is the use of control strategies to make

failure-prone systems responsive to untoward events. This requires

the 'building in' of fault-tolerance, by modelling how failures can

happen and what can be done to avoid or overcome them. In general,

fault-tolerant controllers will trade some degradation of performance

quality before failures occur for system 'survival' afterwards.

This may involve component repair, maintenance, or reconfiguration

of the control system.

From an examination of coimnon engineering practices and

consideration of fault-tolerance needs of engineering systems, some

attributes that fault-tolerant controllers should possess can be

identified. We call them:

. Passive Hedging

. Active Hedging (Risk Reduction)

Adaptability

6
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Robustness

Implementability.

These properties of fault-tolerant controllers are discussed in

this section.

Passive and active hedging require the balancing of conflicts

between system performance and reliability goals. Adaptability

involves the use of redundancy, probabilistic descriptionsof failure

occurrences, and the ability to detect them. Robustness and

implementability are necessary for successful operation of any fault-

tolerant controller.

PASSIVE HEDGING

This is simply taking into account the possibility of failures

(and associated costs) in the choice of control. For example, an

automobile driver speeding around a curve might avoid the outer

edge of the road, so that if a tire blowout occurs the system can still

recover. Passive hedging does not involve using controls to affect

the probability of future failure event occurrences.

ACTIVE HEDGING (RISK REDUCTION)

Probabilistic knowledge of failures may be used to alter their

likelihoods. Preventive maintenance (replacement before failure)

is an example of this. If failure probabilities depend upon control

inputs (directly, or indirectly as a function of the system state)

7



then controls can be used to actively hedge as well as to minimize

operating costs. For example, voltages and currents in an elec-

trical system might be kept below levels that cause components to

burn out.

ADAPTABILITY

In general, some kind of on-line, real-time system testing

and failure detection process must take place. When a failure is

known to have occurred, 'contingency' controls are used. The

primary system goal may then become, for example

degraded recovery - 'graceful degradation',

'fail-soft' operation

safe shutdown - ('fail-safe' operation)

so as to avoid further system damage by continued

operation.

The system must detect its failures and reorganize itself to com-

pensate for them.

ROBUSTNESS AND IMPLEMENTABILITY

Fault-tolerant controller designs should be robust in the sense

that they are insensitive to small disturbances and modelling

inaccuracies. Fault-tolerant control strategies must be implementable

in real-time if they are to be useful. Thi restricts the complexity

of controller designs.

N 8
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The controller designs that are obtained using any proposed

fault-tolerant control theory must be evaluated in terms of these

five attributes, to determine if the theory is meaningful. The task

at hand is to develop objective problem formulations that capture

these subjective fault-tolerance attributes. In particular, since we

are concerned here with the balancing of conflicting system performance

and reliability goals, we will focus on the hedging properties of

fault-tolerant controllers.

1.3 Modelling Fault-Prone Systems

A key step in the development of any theory for system design

and analysis is the abstraction of physical reality by approximate

but representative mathematical models. To study fault-tolerant

controllers we must first develop models that adequately capture the

salient characteristics of fault-prone systems. We need models that

are sufficiently realistic for the design of good fault-tolerant

controllers and are mathematically amenable to detailed analysis. We

also require tractable problems in order to gain insight into fault-

tolerant structures.

A characterizing attribute of fault-prone systems is their

operation in different forms or modes. Fault-prone systems experience

abrupt changes in their structure and state from phenomena such as

component failures and repairs, changing subsystem interconnections,

changes in operating points and abrupt environmental disturbances.

9



II

Each system form corresponds to some combination of these
1

events.

The state of a fault-prone system can thus be decomposed into

two parts: a form process, which indicates the operational status

of the system, and the rest of the state which we call the x process.

A logical structure for modelling this kind of arrangement depicted

in figure 1.1. It is a feedback connection of two subsystems: a form

subsystem that describes abrupt structural changes in the system and

an x-subsystem that represents the dynamic evolution of the system

between form transitions.

Disturbances Outputs
and

Controls
-. SUBSYSTEM x

Disturbances
SUBSYSTEM and ControlsOutputs

Figure 1.1: General Hybrid System Structure.

iIn reliability theory the structural conditions of a system are usually
called modes (eg., normal mode, failure modes, etc.). In control
theory the term mode has a different meaning, and a third definition
pertains to statistical analysis. Since the problems we are investi-
gating draw from reliability theory, control theory and stochastic
processes, we have elected to avoid the term mode. Instead, form is
used to denote the operational status or structure of the system.

10
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The form is a stochastic process taking values in a finite set.

Its transition probabilities are dependent, in general, on the

x-subsystem state and control inputs. The x-subsystem is modelled by

deterministic or stochastic finite-dimensional vector differential

or difference equations. The parameters of these equations depend on

the form, which feeds into the x-subsystem.

The use of this kind of continuous-plus-discrete-state structure

to model fault-prone systems is not new. For example, some applications

are surveyed in (671. These systems have been called stochastic hybrid

models by Willsky, et al 175 ] in the analysis of electric power

systems.

The use of stochastic models when representing fault-prone

systems is essential. As in other control analysis applications, the

system model used must successfully deal with sources of uncertainty

such as

sensor errors, measurement noise

* parameter errors and other modelling errors
in the mathematical representation of the
physical system

external random disturbances (driving noises)
that effect the time evolution of the
system.

For fault-prone systems an additional source of uncertainty comes from

random disturbances that alter the system structure. Deterministic

system models just cannot adequately represent these fundamental

system characteristics.

.0111



In this thesis we restrict our attention to the fault-tolerant

control of discrete-time systems. There are several reasons for

* . doing this. The increasingly digital nature of control technology and

the inexpensive availability of microprocessors for components in

'smart' controllers make discrete-time models appropriate for con-

troller design and analysis. Since implementability is a required at-

tribute of fault-tolerant controllers, it seems preferable to avoid

problems arising from the discrete approximation of continuous-time

designs, by obtaining discrete-time designs directly.

In addition the discrete-time formulations of these problems are

more easily analyzed than continuous-time ones. When dynamic program-

ming is used to solve discrete-time trajectory control problems there

is no partial differential equation that must be solved. Thus we can

sidestep the inability to solve the Bellman equation for control

problems with x-dependent form transition probabilities, This allows

us to gain considerable conceptual insight into the structure of

fault-tolerant control systems.

This research considers discrete-time systems that are special

cases of the following model;

=A(rk)x + B(r)u + (rk)v (.1)

k+ 1  k k k k

Pr{r Jrk i, x 2xl, uk=U, q k=q} = p(i,j;x,u,q) (1.2)k+l k k+l k k
k+1 , X g (1.3)

1 See, for example, [70 ].
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Y= C(rk)Xk + D(rk)uk + A(rk)Wk (1.4)

The 'order of operations' is as follows:

(1) at time k the system is in state (xk rk)

(2) controls uk and qk are chosen

(3) during time interval (k,k+l), xk+ 1 is

generated via (1.1)

(4) then rk is generated according to (1.2),

based on x u qk and r
k+. k'k k

(5) when the form changes from rk to rk+l ,

Xk+1 may be "reset" to Xk+I . This resetting

is generally nonlinear.

(6) The output of the x-subsystem, Yk' is produced

by (1.4).

This convention allows for a failure or other form change to be

modelled as occurring at the final time K=N (when N<-).

In the above

time index k takes integer values

ke{k0, +l, ... ,N-,N}
0

xk R x-process

Uk e Rm x-controls

vk 6 Rm x-driving noise

13



SYk e RP  x-subsystem output

. wk eR x-observation noise

The form process {rk: k=k0,...,NI takes values in a finite set

rk  e M {1, 2, .... ,M) .<

The form controls {q0 ql,.... qNl take values in a finite set

q. qk e L {I,2,...,L} L<00 "

A(rk ), B(rk ) C(r ), D(r ), =(r k ) and Ar k ) are appropriately-
16 k k' k k k k

dimensioned matrices where:

A(r) open-loop x dynamics given the current

form r

B(r) = x-process input gain in form r

E(r) = x-process driving noise gain in form r

C(r) = x-process sensor gain in form r

D(r) = input-output direct link in form r

A(r) = x-process observation noise gain in form r.

Thus the model (1.1)-(1.4) is sufficiently general to allow represen-

tation of form-dependence in dynamics, actuators, sensors and noise.

The form transition probabilities p(i,j;x,u,q) in (1.2) must

obey

p(i,jlx,u,q)> 0 for all i,j e M
and all x,u,q

14



M for each i e Mp~i,j;x,u,q =l
j=lpand all x,u,q

I,=.

The noise processes {v } and {w k  are assumed to be 'white',

in that

E{tv k-E(vk )]'v s-E(v )]} 0 s~k

E{[w -E(wk )  w ]Ws-E(ws)]} = 0 s~k

with unity variance matrices and

all elements of vk and w are independent

(for all times k,s)

all elements of vk and x , and of wk and x.,

are independent for all k>s

. all elements of vk and wk are independent of

r for all k>s.s

A crucial consideration in the modelling of fault-prone systems

*" is the realistic representation of form transitions. There are two

basic kinds of transitions:

* independent of x

* x-dependent

The x-independent form transitions occur as though no x-to-r

feedback link exists in figure 1.1. They may be uncontrolled, or

15
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controlled by form controls {q 0 '"" ' -} that are not chosen in

response to {x ,... ,xN-1 }. Example of x-independent form shifts

are random 'no wearout' component failures and lightning-induced

failures in electrical power distribution systems.

The x-dependent form transitions are always controllable in some

sense, either by form controls qk (which can be based on xk ) or

through active hedging (by {uk} and the resulting x-process).

Examples of x-dependent form shifts in electrical power distribution

systems include the restructuring of a system when generator-protecting

relays and circuit-breakers trip, human operator control actions based

on observation of x-dynamics (such as switching on auxilary generators)

and transmission-line failures due to current overloads. Thus form

shifts can be totally unpredictable (as in random 'no wearout' component

failures), totally predictable (as in scheduled, deterministic actions)

or partially predictable (as in the switching of relays precisely (or

approximately) when a random quantity reaches a given threshold).

Suppose that the "reset" operation in (1.3) is linear. Then the

x-subsystem dynamics are linear in x and control u if the form process

{rk } does not depend on x. For such systems with x-dependent forms,

the only source of x-dynamics nonlinearity is through the form transition

probabilities.

In this thesis we will consider x-dependent form transition

probabilities that are piecewise-constant in x (or which can be

16



approximated as such). This yields a kind of dynamcs model that

is amenable to detailed analysis, since it consists of linear 'pieces'.

1.4 Formulating Fault-Tolerant Optimal Control Problems

A general fault-tolerant control system structure is shown in

figure 1.2. Both the x-controls {u ,...,UN 1) and the form controls

{q' .... qN_l } can depend upon possibly noisy observations of current

(or past) values of the hybrid system state (x,r). If these quan-

tities are not perfectly observable then the design of x and r

estimators is an integral part of the overall fault-tolerant optimal

control problem.

When form transitions are x-dependent, imperfect knowledge of

x causes uncertainty about future form shifts even if r is perfectly

observed. When r is not perfectly observed, failure detection and

isolation (hence form estimation) usually involves some combination

of hypothesis testing ideas and dynamic stochastic estimators

(such as the Kalman filter). A thorough survey of failure detection

and isolation methods appears in the survey paper [ 74].

When the form is not perfectly observed, the control serves a

'dual' purpose. It can be used both to control the state and to probe

for information about it. Tradeoffs between control costs, the costs

resulting from incorrect form detection and the expected benefits of

probing must be considered in these cases. A general discussion of

17



SYSTEM MODEL

x rI
IDISTURBANCES DISTURBANCES

ISUBSYSTEM r SUBSYSTEM q I

I x-CONTROLCOT L

I EST IMATOR

I STATE ESTIMATESI

I CONTROLLER CONTROLLERI

ESTIMATOR/CONTROLLER

Figure 1.2: Fault-Tolerant Control System Structure
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this 'dual control' phenomenon first appeared in 1960 in the work

of Fel'dbaum [24 ].

Two types of form control actions are possible:

* indirect form control - This is the control of the

probabilities of form transitions.

* direct form control - This involves control actions

that immediately, deterministically change r.

An example of indirect form control is preventive maintenance, which

improves failures probabilities (at some incurred cost). Switching to

backup systems in anticipation of (or response to) failures is an

example of direct form control.

Embedded in any fault-tolerant control problem is an implicit

-* criterion of system reliability. The problem formulation incorporates

*- models of failure occurrences, and reflects the relative importance

of various form-dependent costs.
J

In this thesis we'iropose-extensions of the well-known linear

guAdratic Gaussian (LQG) control methodology to systems having

randomly jumping structures and parameters that are described by

reliability-theoretic models. -We cal. this- the jump linear,quadratic

(JLQ) control problem.

The cost function to be minimized is quadratic in the x-control,

uk. If the system is in state (x.,ri ) at time i, we want to minimize

(N-1
J.(xiri) E uk'R(r )u + Q[+r' ri 

k'ku kk+ k 1.i

+ QN xN'rN] (

19



where the expectation is with regards to {vk}, {wk } and {rk}.

R: M x L - Rmxm is a bounded positive-definite symmetric matrix-valued

function

R(r,q) = R' (r,q)> 0 all r,q (1.6)

and Q: Rn x M x M x L - R is a bounded nonnegative scalar-valued

function

Q(x,rl 1 r2 ,q)> 0. all x,r ,r 2 ,q • (1.7)

The optimal expected cost-to-go from state (xk~rk) at time k is

0k
Vk(xk rk) = mk k ) (1.8). .. {uifq i:k<i< -l}

Thus the optimal controls are found by minimizing the expected value of

a cost functional which may include:

operating costs that penalize control energy expenditure

and system performance differently in each form.

jump costs that are charged if and when the form changes.

These might represent start-up or shut-down costs of

equipment, or undesirable transient phenomena; load shed-

ding costs in electric power systems are examples.

* terminal costs dependent upon the final state (including

form) of the system.

The control costs u R(r k) (and usually the x-cost

Q [Xk+ 1 ,rk' rk+l 'qk]) are chosen to be quadratic because of the
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wide applicability and good robustness properties of linear quadratic

control problem formulations (see, for example, [3]). The

qk-dependence of these costs models the penalties incurred in applying

form controls. The Q cost depends, in general, on the current and

prior form (r and rk) so that jump costs can be included. Thek+1lan k

control sequences {uk}, {qk} are constrained to be feedback controls

of the form

= kEY ds-} U's"ds-k1'{s ds }) (1.9)

= k[{Ys:k s<k} {u ,q :k <s<k-l1,{r :k <s<k}l (1.10)
-- s 0- s 0--

That is, the x-control and form control at time k are determined

from past outputs, past (known) controls, and perfectly observed

form observations.

Control problems for continuous-time stochastic hybrid systems

with x-indpendent r have been extensively studied in the literature.

The stochastic hybrid models used are usually special cases of those

analyzed by Gihman and Skorohod L261. Under the assumption of perfect

observations, continuous-time optimal control problems for a large

class of system dynamics, form transition models and cost functionals

can be reduced to the search for solutions of nonlinear partial

differential equations using 'verification' theorems of dynamic

programming.
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Krasovskii and Lidskii [ 34] obtained most of the results

that are currently available in the literature for stochastic hybrid

system control (with x-independent form processes and perfect state

observations). The problem was studied later by Wonham [76 J. He

obtained conditions for the existence and uniqueness of solutions in

the JLQ case, and also derived a separation theorem under Gaussian

noise assumptions for JLQ control problems with Markovian forms and

noisy x (but perfect r) observations. Sworder [63 ] obtains similar

results using a stochastic maximum principle.

Discrete-time versions of the JLQ x-control problems for

stochastic hybrid systems have not been thoroughly investigated in

the literature. A special case of the x-independent JLQ discrete-

time problem is considered in Birdwell [12] and [13 [14].

A great deal of work has recently been done concerning the

modelling and analysis of jump processes like those describing the

form subsystems here. References of particular note include [16-18,20,

25,42,62,711. An excellent discussion of martingale methods for optimal

control problems is contained in [21 ].

This thesis focuses on systems where the form observations are

not noisy. This has not been done because the noisy observation case is

unimportant. The reason for this problem restriction is that, even when

the form is perfectly observed, the solution of control problems of this

1Only the actuator gain is form dependent.
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kind for the x- and u-dependent form transition probability cases

is very difficult, previously unsolved, important, and useful

in terms of the insight which it provides us regarding the trade-

offs between reliability and system performance goals in fault-

tolerant controller designs.

1.5 Problems Addressed and Results Obtained

Using dynamic programming, several classes of the discrete-

time jump linear quadratic (JLQ) control problem formulation of the

last section have been solved. In this section these problems

and results are surveyed.

PART II: JLQ Problems with x-independent forms

In part II of this theses the 'easiest' class of JLQ problems

is examined. These involve systems with x-independent, Markovian

form processes.

The noiseless case is addressed in chapter 3. The control

laws that are obtained are linear in x, with a different law for each

form. The expected costs-to-go are quadratic in x (for each form).

All of the control gains and costs are obtained by solving off-line

a set of M precomputable Riccati-like difference equations (one for

each form).
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The continuous-time version of this problem was first solved by

Krasovskii and Lidskii [ 34 1, and later by Wonham 1 76) and Sworder

[67]. A special case of the discrete-time result presented in

chapter 3 appears in Birdwell [ 12 ].

For infinite time-horizon problems, steady-state results similar

to those obtained in the standard LQG problem are accessible. An

interesting (but, in retrospect, obvious) fact is that the controlled,

closed-loop dynamics in every form need not be stabilizing so long

as the probability of entering and remaining in these stable forms

is not "too large." A similar but less inclusive sufficient con-

dition for the continuous-time version of the problem was developed

by Wonham [ 76].

These controllers exhibit the desired adaptability property in

that different laws are used in each form. That is, the system

reorganizes itself when a failure occurs so as to best use available

direct and functional redundancy. The controllers derive robustness

and implenentability from the linear quadratic nature of the problem.

Passive hedging is used to minimize the expected costs. Tha J

potential failures and other form changes are taken into account (via

the cost functional) in the choice of the optimal control. But no

active hedging (controlled modification of failure probabilities) is

possible because of the independent, uncontrollable nature of the

fail; es.
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In chapter 4 several extensions of the x-independent JLQ

problem are considered. These include the addition of jump costs,

linear resets of x, and additive white input and x-observation noises.

The presence of additive (usually Gaussian) white observation

and input noise does not complicate these problems. Since the form

is perfectly observed (with delay), a separation theorem like that of

the standard LQG problem follows. In each form, a Kalman filter

estimates x, and this estimate is then used by the control law for

that form.

PART III: Scalar JLQ Problens with x-dependent forms

In part III we consider JLQ control problems that involve state-

dependent structural changes. These problems possess

* perfect observations of the state (,rk) at time k

* quadratic costs in scalar x.k and uk, for each form,

no driving or observation noises,

x dynamics that would be linear, if not for

randomly jumping parameters,

jump probabilities that depend upon x in a

piecewise-constant way (with finitely many

pieces) or are approximated as such.

For finite time-horizon problems in the x-dependent case we

have obtained a recursive algorithm that determines the optimal
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expected costs-to-go and control laws off-line, in advance of system

operation.

The optimal control laws are piecewise-linear in x (with

1 0x ,x terms) and the optimal expected costs-to-go are piecewise-

quadratic in x (with x ,x ,x terms). The gains and costs are

obtained from a set of precomputable Riccati-like equations (not the

same as in the x-independent failure case). The number of "pieces"

grows only additively (going backwards in time from a finite terminal

time). The additive increase depends upon the number of different

forms that the system can change to (from its current one), and the

number of pieces in the relevant piecewise-constant-in-x transition

i 4) probailities. Thus there is a tradeoff between the accuracy of the

modelling of failure probability state-dependence versus the comp-

utational burden of control law determination (and the complexity

of the controller.

The optimal controller attempts to minimize the cost incurred

both by the usual LQ regulator action, and by driving the system

state to regions where the likelihood of undesirable form shifts is

reduced. The different "pieces" of the optimal expected cost-to-go

and control law correspond to using the control alter form transition

probabilities at various future times. That is, to actively hedge.

In general, for infinite time horizon problems the number of

pieces becomes infinite. Fortunately, for a large class of problems
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this is not an obstacle to implementation because most of the control

law and cost pieces converge. That is, although the true optimal

*control law involves a (countably) infinite number of pieces, each

valid over a different range of the x variable, most of these pieces

are "almost the same."

Thus there is a tradeoff between closeness to optimality and

controller complexity. Nearly optimal, steady-state controllers

can be obtained to within any specified deviation from optimal, but

- with a corresponding level of complexity (number of separate-interval

control laws).

PART IV: Extensions to the Scalar x-dependent JLQ Problem

In this part of the thesis we extend the results of chapters

5-7 to more general JLQ problems. In chapter 8 we consider a

modification of the solution algorithm of Part III that lets us solve

approximately problems involving:

x operating costs and terminal costs that are piecewise-quadratic in x

2 1 o
(with x , x and x terms)

r cost pieces that are concave-up as well as concave-down.

This jump linear piecewise quadratic (JLPQ) control problem is solved using

a recursive algorithm that determines the optimal control law and expected

costs-to-go off-line. As in the JLQ case, the optimal JLPQ control laws

are piecewise-linear in xk, in each form. The optimal expected costs-to-

go are piecewise-quadratic. Unlike the JLQ case, the number of pieces of
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. the opt.mal JLPQ controller may grow at a faster-than-linear rate as the

number of stages from the finite terminal time increases. The piecewise

structure of the optimal controller is caused by both the piecewise-con-

stant nature of the form transition probabilities (as in chapters 5-7) and

by the piecewise-quadratic nature of the x-operating and terminal costs.

In chapter 9 we extend the solution methodology of chapters 5-8 to

address a larger class of scalar jump linear control problems, possessing

additive input noise and a more general class of x-dependent form transi-

tion probabilities, x-operating costs and x-terminal costs. Specifically

we consider scalar jump linear control problems with auadratic control

penalties and

input noise densities that are twice continuously differentiable

except at a finite number of points,

* x-operating costs Q(x,r), x-terminal costs QT(xr) and form tran-

sition probabilities p(i,j=x) consist of a finite number of con-

vex or concave (in x) pieces.

We call this the jump linear piecewise convex (JLPC) control problem.

Our study of this class of problems is motivated by a desire to make the

solution approach of chapters 5-8 applicable to more realistic control

problems. The major extension of chapter 9 is the inclusion of additive

input noise in the x-process dynamics. Additive input noise profoundly

changes the nature of the optimal controller. The viecewise-quadratic

structure of the optimal cost and piecewise-linear structure of the op-

timal control laws is lost due to the "blurring" effect of the noise. In

chapter 9 we show how JLPC control problems with additive input noise can

be reformulated (at each time stage) as different but equivalent JLPC pro-

blems that do not possess input noise. These reformulated problems can be
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solved using the approach of chapters 5-8. The optimal controller for

noisy JLPC problems can be obtained following the steps of an algorithm

(presented in flowchart form) which generates, off-line, the optimal con-

trol laws and expectad costs at each time k and from each form j, Since

the optimal control laws are not piecewise-linear in xk , we don't have the

nice inductive controller structure of the JLQ and JLPQ problems. We

therefore propose a suboptimal approximation of the JLPC controller that

is easier to determine and implement than the optimal controller. The

suboptimal control laws are piecewise-linear in xk at all times k (and

from each form j).

In chapter 10 we examine further extensions of the solution methodol-

ogy of Part III. We first consider jump linear control problems where the

x process is not scalar. This class of problems is far more complicated

than the scalar case. However we can obtain approximate (suboptimal) con-

trollers for these problems using an algorithm based upon the suboptimal

controller approximation of the JLPC problem (of chapter 9).

We next consider jump linear control problems involving u-dependent

form transition probabilities. This class of problems is of practical im-

portance since it captures the issue of actuator-dependent failures and it

allows us to examine conflicts between system performance goals and relia-

bility requirements. The control problems (for scalar x and u) can

be solved using a modified version of the solution algorithm of Part

III. At each time stage the optimal expected cost is piecewise-quad-

ratic in x.

in chapter 10 we also consider JLO problems where the form process

can be controlled on the basis of observed xk and rk values. This allows

us to study controllers that use strategies such as preventive maintenance,
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switching to backup systems in anticipation of failures and the like.

Both direct form control (deterministically switching between forms) and

indirect form control (altering form transition orobabilities) are consi-

dered. For scalar-x versions of these problems with x-independent form

transition probabilities (if no form controls are applied), after one time

stage (backwards from a finite terminal time) the optimal control problem

resembles the x-dependent JLPQ problems of chapter 8. The optimal expected

costs-to-go are piecewise-quadratic in x: and are indexed by the choice of

form control q as well as the current form rk , at each time k. The opti-

mal controller must determine the best form control option on-line, given

observations of (k,rk). These choices are based upon parameters that are

computed (off-line) by Riccati-like difference equations, in a modification

of the algorithms of chapte:- 7-9.

PART V: Conclusions and Suggestions for Future Research

In chapter 11 we summarize the results of this thesis and we

identify a number of specific and more general directions for

future research.

In conclusion, this thesis considers the control of dynamic

systems subject to abrupt structural changes at random times. It

is motivated by the need for design techniques that yield fault-

tolerant systems. This thesis concentrates on the tradeoffs and

conflicts between system reliability and performance goals.

Specifically, we consider the attainment of fault-tolerance through

• control strategies rather than by direct rtdundancy. This is, of
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course, only part of the overall fault-tolerant design problem.

However the problem formulations here capture many important issues.

We believe that the problems that are addressed and the results

obtained in this thesis provide an important step in the development

of a general theory of fault-tolerant control.

oI
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2. BACKGROUND AND RELATED LITERATURE

The design of fault tolerant, failure-resistant dynamically-

reliable control systems is a problem that falls within the scope

of moth automatic control theory and reliability theory. The purpose

of this chapter is to provide background for this investigation

from both of these fields, and to survey results relating to the

design of fault-tolerant control systems.

In section 2.1 we consider the relationship between the fault-

tolerant control problem and reliability theory. In section 2.2 we

will describe approaches to the design of fault-tolerant control

systems that are distinctly different from the methods we are con-

sidering. More closely related work on the control of jumping para-

meter systems is discussed in section 2.3.

2.1 Relations to Reliability Theory

Reliability engineering is primarily concerned with the design

and analysis of systems that can perform their missions with high

probability despite component failures.

Reliability developed as an engineering discipline in response

to the military requirements of World War II. The first formal

reliability study reportedly (see 123 ]) sought to explain why

German VI and V2 missles performed so poorly despite their construction

from highly reliable components.
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Following the war, complex system design problems in the

electronic, nuclear, aircraft and space industries gave impetus

to the field. Most of this early work involved the modelling of

failure phenomena and the collection of component failure data.

Early theoretical considerations of reliability in the context

of automata theory (Von Neumann 1 73]) and reliable circuit synthesis

(Moore and Shannon [43 ]) concerned achieving overall reliability

through the "proper" use of unreliable components.

The first book on reliability (by Bazovsky) did not appear until

1961 [ 8]. It was followed by a number of texts in the early 1960's,

such as [ 6], [191, [28], [46], [52], 54], [72] and [81).

Three more recent texts are [ 29], [43] and [23 ]. The works of

Gnedenko, et.al [27 ] and Barlow and Proschan [ 7 ] provide more

mathematically rigorous treatments of reliability theory.

Current activity in reliability theory consists, in large part,

in the development of mathematical theories and associated computerized

algorithms for the analysis of reliability characteristics for systems

composed of highly reliable components. In most contemporary engineering

applications, many (or all) of a system's component parts must be

extremely reliable if strict system reliability standards are to

be met. One motivation for the development of a dynamic control ap-

proach to reliability engineering is the existence of problems (for

example, electric power systems) in which the system's dynamics and its
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reliability are intrinsically intertwined. Also the use of controls

to achieve reliability may, in some applications, facilitate the use

of fewer and less reliable (that is, less expensive) components in the

design of reliable systems.

There are two basic approaches that are currently used for the

reliability analysis of complex systems (or proposed designs). One

approach might be called the 'static' consideration of system

reliability. This kind of analysis seeks to determine the probability

that a given system will not fail (or will achieve various degraded

modes of operation) after some fixed time interval, based on a priori

information about the components, their connections, etc. Some

examples of this static approach, which involves fault-trees, cut sets,

graph theory and the like are in [39 ],44].

A second approach to system reliability analysis focuses on the

dynamic behavior of system failure probabilities. It involves the use

of queueing theory models of complex systems. Queueing systems might

be thought of as combinations of sequences of elementary operations

such as single component failures, repairs or replacements, maintenance,

fault searches and detections, successful component operation prior to

failure, etc. These elementary operations overlap in time, in general.

They are usually considered to be independent of each other; depending

only on the operational status of the overall system.
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The outlook of this thesis is in the spirit of this second ap-

proach to reliability analysis. However, we are particularly concerned

with the dynamic performance of systems and the evolution of

(continuous-state space) physical quantities as well as the failure

status of the components that manipulate these quantities. We want

to formulate control problems that achieve good system performance

and high reliability. It is important to realize that the goals of

reliability and performance may be conflicting. For example, the use

of a large control to quickly drive the system into a safe region of

the state space, so as to reduce the probability of a failure, may

entail a large control cost. On the other hand the use of control to

maximize performance may result in a loss of system reliability.

Reliability considerations often limit the performance that can be

obtained from a system; electric power systems are an example of this.

The motivation for our work is a desire to obtain a systematic,

objective means for designing systems that take into account the need

for both high reliability and performance and also account for possible

intrinsic conflicts between these goals. Consequently such systems

should use available system redundancy in a quantifiably efficient

manner.

2.2 Other Approaches to Fault-Tolerant Control

A number of approaches to the design of fault-tolerant control

systems that are distinctly different from the methods used here have

been considered previously. We will survey them here. In the next
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section we will then consider previous work that is more closely

related to ours, and we will indicate how previous efforts differ

from the work of this thesis.

A mathematical framework for building reliable control systems

through the use of redundant, less reliable controllers is presented

in the work of Siljak (61 ]. This approach is a direct extension,

in spirit, of the work of van Neumann [73 ) for automata, Moore

and Shannon [43J in synthesizing reliable circuits, and Barlow and

Proschan [ 7 ] in constructing reliable system from unreliable com-

ments. In [61 1, control reliability is defined to be the probability

that a given control structure will insure stability of the controlled

* - system under a specified class of failures which occur with known

probabilities. Experimental observations indicate high reliability

of decentralized control schemes for large systems with respect to

structural perturbations of interconnections and nonlinearities of

subsystem couplings 1 59 ], 1 60 ], 1 22 ] and low reliability of these

same decentralized strategies when the system is subject to structural

perturbations in feedback interconnections and controller failures.

The main reason is that, in reliability-theoretic terms, decentralized

controllers are generally series connections of controllers; hence

any one controller failure can cause total system failure. The

natural solution suggested by reliability theory is to introduce a

kind of parallel controller action, through multiple control systems
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that have "functional" redundancy (i.e., overlap of capabilities).

This is explored in [ 61]. This kind of overlapping decentralized

control system decomposition has been used for the modelling and control

of a string of high-speed vehicles [ 4 ] and in freeway traffic flow

regulation [ 32].

Another approach to the analysis of reliable systems appears in

the work of Beard [ 9 ]. He examines 'self-reorganizing' linear

systems which restructure themselves to compensate for actuator and

sensor failures, using the functional redundancy of their components.

Beard's approach is to identify any change (from a set of known pos-

sibilities) and then to attempt to alter the system's feedback control

law so as to achieve closed-loop stability. He obtains bounds on the

number of actuators and sensors needed (that is, the level of component

redundancy) using controllability and observability criteria.

A third method for achieving fault-tolerant designs makes no

explicit reference to reliability theory. This approach is to try to

obtain a kind of "passive" fault-tolerance through the design of non-

adapting robust controllers that attempt to provide satisfactory control

in all forms. The fundamental work on the robustness of feedback

systems is that of Bode [ 15]. These results were extended by Horowitz

[ 30], E 31], Kriendler [35 ] and others, and by Kwakernank and Sivan

([ 38], p.427) in the discrete-time case. Geometric approaches to the

analysis of robustness properties of feedback controllers have been
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used by Wong [77], [78], Zames [79], [80] and Safonov and Athans

55], [56], [ 57]. In particular, Safonov [56 1 has obtained

conditions characterizing the robustness of controllers when parameter

variations result from a change of operating points in a nonlinear

system. The recent thesis of Lehtomaki [41] provides a comion frame-

work for these and new robustness tests.

An alternative approach to the design of fault-tolerant controllers

is the use of actively adapting controllers that respond to changes in

the operating environment. There are a large number of diverse problem

approaches and formulations that go by the name 'adaptive control', some

of which are relevant to fault-tolerant control. We will not review

these here since general excellent surveys exist (see, for example

[31, [ I], and [40)).

2.3 Control of Jumping Parameter Systems

In this thesis we consider control problem formulations that

explicitly include the possibility of system failures and structural

changes. We propose extension of the well known linear quadratic (LQ)

control problem to include systems having randomly jumping parameters,

and costs that reflect these changes in system structure. As discussed

in Section 1.4, in this way we hope to capture some of the reliability

and performance tradeoffs in the fault tolerant control problem. We

call this the jump linear quadratic (JLQ) control problem.
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Control problems involving systems having jumping parameters are

not new. For example, some applications are surveyed in [67]. These

continuous-plus-discrete-state models have been called stochastic

hybrid models by Willsky, et.al £ 75 1 in the analysis of electric

power systems. Control problems for continuous-time stochastic hybrid

systems having state and control-independent discrete-state parts

(i.e., x-independent form processes in the terminology of section 1.3)

have been extensively studied in the literature.

The stochastic hybrid models used are usually special cases of

those analyzed by Gibiman and Skorohod 126 ]. Under the assumption of

perfect observations, continuous-time optimal control problems for a

large class of system dynamics, form transition models and cost func-

tionals can be reduced to the search for solutions of nonlinear partial

differential equations using 'verification' theorems of dynamic pro-

gramming. Krasovskii and Lidskii [34 I obtained most of these results

that are currently available in the literature for stochastic hybrid

system control (with x-independent form processes and perfect state

observations). The problem was studied later by Wonham [76 ]. He

obtained conditions for the existence and uniqueness of solutions in

the JLQ case, and also derived a separation theorem under Gaussian noise

assumptions for JLQ control problems with Markovian forms and noisy x

(but perfect r) observations. Sworder [ 63 ] obtains similar results

using a stochastic maximum principle and has published a number of
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extensions with his co-workers, including [45], [64], [651, 166],

[68], 1 69]. Stochastic minimum principle formulations for

continuous time problems involving jump process have also been considered

by Rishel ([ 48 1,1 49 ],[ 50 1,[ 51 1), Kushner C 36 ], and others.

Robinson and Sworder [ 53], [ 70 ] have derived the appropriate

nonlinear partial differential equation for continuous-time jump para-

meter systems having state and control-dependent rates. A similar result

appears in the work of Kushner[ 36 ] and an approximation method for the

solution of such problems has been developed by Kushner and DiMasi 1 37 ].

This is important work but technical issues, such as the lack of existence

* of closed form solutions, make it difficult to expose how the optimal

controller effects the tradeoff between performance and reliability.,e
The major focus of this thesis (i.e., part III) is on systems

subject to structural form changes that can be implicitly controlled,

through the dependence of form transition probabilities on the continuous

part of the state. This dependence allows for the modelling of

conflicts between performance and reliability goals. We choose to

consider discrete-time versions of the jump linear quadratic (JLQ)

control problem, rather than extend the continuous-time x-dependent

results of Sworder [53], [70 1 because the discrete-time formulation is

amenable to detailed analysis. In discrete time we can get insight into

* how the optimal controller balances reliability and performance goals.

Qualitative fault-tolerance concepts such as active hedging can be quanti-

fied in the discrete-time setting.
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The control of jumping parameter systems in discrete time have

not been as thoroughly investigated as in continuous time. The only

results available in the literature are for x-independent JLQ problems

where the actuator is form-dependent. These are considered in the

thesis of Birdwell [ 12 ] and in [13], [14).

As a preliminary step in our investigation we also consider

discrete-time JLQ problems with x-independent forms. The derivation

of the basic result is straightforward and analogous to the continuous

time problem for finite time horizons. We obtain some interesting

results regarding infinite time horizon problems, including necessary

and sufficient conditions for the existence of steady-state optimal con-

trollers. These results are stronger than the corresponding continuous-

time sufficient conditions obtained by Wonham 176 ], and they provide

significant insight into the different types of behavior that can be

exhibited by JLQ systems.

2.4 SummarI

In this thesis we consider the design of fault-tolerant control

systems through the jump linear quadratic control problem formulation

that was introduced in Chapter 1. These problems involve the control

of continuous-plus-discrete state, stochastic hybrid systems.

Continuous time control problems for such systems have been

extensively studied in the x-independent form case (with perfect form
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observations). The continuous-time x-dependent case leads to

nonlinear partial differential equations that are analytically

intractible, although approximation techniques have been proposed.

The results available for the continuous-time case don't expose how

the tradeoff between reliability and performance is effected by the

optimal controller.

We consider discrete time problems in order to obtain some

understanding of the control tradeoffs involved between system

performance and reliability goals, when structural changes and failures

depend upon the continuous part of the state. The main focus of this

thesis is on problems involving x-dependent form transitions since

this dependence allows for the modelling of conflicts between perfor-

mance and reliability. To the best of our knowledge, discrete-time

problems with this x-dependence have not been studied previously in

detail.
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3. NOISELESS MARKOVIAN-FORM JUM LINEAR OUADRATIC
OPTIMAL CONTROL PROBLEMS

3.1 Introduction

In this chapter we consider a special class of the jimp linear

quadratic (JLQ) control problem formulation in chapter 1. we examine

the optimal control of jump linear systems having

. x-independent Markovian form processes

. perfect state observations and no noises

. purely quadratic operating and terminal costs

. no 'resets' of x when the form changes.

This class of problems is formulated and solved in sections 3.2-3.3.

The optimal control laws are linear in (a different law for each form)

and the optimal expected costs-to-go are quadratic in xk. These control

laws and costs can be computed off-line, in advance of system operation,

by solving M coupled Riccati-like matrix difference equations.

The continuous-time version of this problem was first formulated

and solved by Krasovskii and Lidskii [34 ], and later by Wonham [70 ) and

Sworder [ 63]. A special case of the discrete-time result presented here

appears in Birdwell [ 12-14 3.

The solution of the discrete-time JLQ problem that is developed here

is a necessary logical first step in the study of more general control

problems for systems with abruptly changing structure which will be

used in later chapters. The controller derivation presented here is
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conceptually straightforward. However study of the optimal controller

provides valuable insights into the qualitative behavior and stability

properties of jump linear systems. Several of these properties are

highlighted by example problems in section 3.4.

In section 3.5 the steady-state control problem is considered.

Necessary and sufficient conditions are derived for the existence of

a set of steady-state constant expected cost-to-go functions. It is

shown that the corresponding set of time-invariant steady-state control

laws stabilizes the controlled system, in that E{x xk} 0 as

(k-k 0 and that the steady-state control laws minimize the limiting

expected cost-to-go as (N-k0)- , with finite optimal expected cost.
0

A more restrictive sufficient condition for the continuous-time

version was developed by Wonham 1 76 1. To the best of our knowledge,

the discrete time steady-state results are new.

3.2 Problem Formulation

Consider the discrete-time jump linear system

i= X Ak(rk)xk + Bk(rk)uk (3.1)

Pr{rk+lJ Irk il Pk+l (i,j) (3.2)

where

x(k 0 ) = ,r(k 0 ) = r 0

00 0 0
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In the above we have

*time index k takes integer values

k efkk k +1,. ..,N-l,N}

x k e Rn x-process

Uk e R x-control

The form process {r k k-k01 ...,N} is a finite-state Markov chain

taking values in

That is,

Prfr k+l 'i 1r0,rl11 ... r rk}Prfr k+ljlr k Vje M and k (3)

where the form transition probabilities p k(ilj) in (3.2) must

satisfy

Pk~i~iV 0i,j rzM and k

M

Pk (j vi em and k

Here A(-) and B(-) are appropriately -dimensioned matrices where,

* for i eM

* .A~i) =open-loop x dynamics in form i

B(il = -process input gain in form i.
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The cost criterion to be minimized is

N-i
J10 (x0,r 0  E kk ' (r)k u + x+iQk+1 (rk+l)+

k° y3.4)

+ xN'KT(rN)xN

The RK(J), Qk+l j)(for each k=0,...,N-l) and 1%(j) are positive-

semidefinite symmetric matrices for each j64_ where

Rk(j) + BP(j) pk+l(Ji)Qk+l(i) B(j)> 0 (3.5)

In particular, (3.5) is satisfied if

R (j)> 0
for all j e M and timesk.

Qk M)> 0

The x 'KT(rN)xN term is-a terminal cost in addition to

xN'Q (rN) XN.

3.3 Problem Solution

The optimal control law can be derived using dynamic programming

1 10]. Let V (X ,r ) be the expected cost-to-go from state

(x,r k) at time k:
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V~xN T;N'xN

Vklx.rk] = in E Ukrk)uk + +iQk+l(rk+l)xk+l rk

uk

+ vk +lrk+l)

(3.6)

Thus Vk[xk,r k] is the minimal value of the cost criterion (3.4),

computed over time interval IkP kl,...,Nl Hence

Vk0  r k ) = min Jko 00  1 ukUN 0 ( 00rk0

The iterative relationship (3.6) can be recursively solved for

Vk(Xk,rk) and Uk (xk,rk) , going backwards in time from finite time N.

Proposition 3.1: Consider the discrete-time noiseless Markovian-form

jump linear quadratic optimal control problem (3.1)-(3.5). The

optimal control law is given by

Uk_1  -Lk-l(J)xkl for rk 1 = j e M

k=-k0 +1, ...,N

and the optimal expected cost-to-go by

Vk[xk,rkJ] = x lk()I k  rk = e 6 M

k=k4, k0+1,...,N
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where the optimal gains Lk l ( J ) are given by

R1 (j) + B 1 (j) p ji D

[M Q,(i)
Bi(j) P ( K ] A (i)

-Kk(')43.7)

for each j M Mjand the sequence of sets of positive semi-definite

symmetric matrices {Kk-I(j): j e M} satisfies the set of M coupled

matrix difference equations

(j) = _(j) Pk(Ji )  38
k- L- kK (i)j -B-1( -I j

j eM

with terminal conditions

N(i) = ((j)

The value of the optimal expected criterion (3.4) that is achieved

with these control laws is given by

x;~ 'k (r 0 )x 00

The proof of this Proposition is contained in Appendix B.1.

49

.. . . .



Note that the {Kk(j): j e M) and optimal gains {Lk(j): j e M}

can be recursively computed off-line, using the M coupled difference

equations (3.7)-(3.8). The M coupled Riccati-like matrix difference

equations cannot be written as a single nM-dimensional Riccati-equation,

because of the inverse terms. Proposition 3.1 essentially1 appears

in Birdwell's thesis [12 ], where it is called the switching gain

solution.

3.4 Examples and Discussions

In this section some qualitative aspects of the JLQ controller

given in Proposition 3.1 are illustrated via example systems. For

convenience, the examples considered here are time-invariant and scalar

in x with M=2 forms. That is,

Xk+ = ax + b if rk-
k 1 1k luk k=

Xk+l = a2 xk + b2uk if rk=2

min E (r k ) + u k(r + XN2K(r
k=O Ix+Qk~~k) NTr)

with form transition probabilities as shown in Figure 3.1.

Time-invariant parameters with A, R, Q independent of the form r.
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PP 2

P21

Figure 3, 1: Example System Form Structure

From Proposition 3.1 we see that the optimal expected costs-to-go

and control laws are

Vx K ,rk=j) = K x j) j=l,2

Uk (x , rk=j) = Lk j)xK j=l, 2

where

LK.l()=b ~til[ Kk([l)]
1 [ 2

Kkl(j) = aj P-1 + P 2 (3.10)

[Kk ()

for J=l,2 and K-NN-1,...,0.

51



77,- .

The closed-loop optimal system thus obeys

a. R.
Xk~l =I x.~ (3.11)

R +b2 lQ () P Q

for k=0,1,...,N-1 and rkj -

k

The K (j), j e MI may or may not converge as k decreases from

N, and x.k may or may not be driven to zero, as shown in the following

examples.

Example 3.1: Here is an example in which the converge quickly
eKk (j)l

and x is driven to zero. Let

Xk+1 = xk + uk if rk

Xk+1 =2x k + 2uk if rk=2

with
P.. 1/2
ij

KT(j) = 0

i,J=1,2
Q(J) = 1

R(j) = 1

The optimal costs, control gains and closed-loop dynamics (computed

using (3.9)-(3.11)) are given in Tables 3.1 and 3.2, for four

iterations:
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k=N-l .5 .8

k=N-2 .6226415 .868421

k-N-3 .6357717 .87472

k=N-4 .6370559 .875327

Table 3.1: Optimal Gains and Costs of Example 3.1.

k=-N-1 .5 .4

k'=N-2 .3773585 .263158

k-N-3 .3642283 .25056

kN4.3629441 .249346

Table 3.2: Closed-Loop Dynamics of Example 3.1.
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The expected cost parameters k(j) and optimal gains Lk(j) are

converging as (N-k) increases. The same is true for the closed-loop

systems, which are stable

Iaj-bjk(j)I< 1

for all times k-N-l, N-2,... ,0 and j 6 M. Conditions for convergence

will be addressed in the next section.

In the 'worst case' of rk= 2 for all times k=0,1,...,ki

lim IXNI <- 1im (.5 N-l x01 =0.

Thus x is driven to zero by the optimal controller.

This example demonstrates the passive hedging behavior of the

optimal controller. That is, possible future form changes and their

associated costs are taken into account. To see this, consider the

usual LQ regulator gains and cost parameters (as if Pl=p2=1 and
11 p2 2 1 n

P =P -0), which are listed in Table 3.3
12 21

Kk(l) = Lk(l) Kk(2) =L.k(2)

(with P =1) (with P =1)
11 22

k=N-l .5 .8

k=N-2 .6 .8780487

k=N-3 .6153846 .8825214

k-N-4 .617647 .8827678

Table 3.3: Standard LQ Solution for Example 3.1.



* .-. -

Comparing Tables 3.1 and 3.3, note that for k<N-2 the gains

of the Proposition 3.1 JLQ controller are modified (relative to

LQ controller) to reflect future form changes and costs. The JIQ

controller has higher rul gains to compensate for the possibility

that the system might shift to the more expensive form r=2. Similarly,

the r-2 gains are lower in the JLQ controller.

Example 3.2: Here is an example where the optimal closed-loop

systems in different forms are not all stable, although the expected

value of x is driven to zero. Let

xk+l xk+u k  if rkl

xk+ 1  2x k + U k  if r k=2 -:

p =p 9* p 1
11 21 12 = 22 =.

.9

.9

where
KT(j) 0

j=1,2

Q(j) = 1

and
R(1) = 1

R(2) = 1000.

Thus there is a high penalty on control in form 2.
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This system is nine times more likely to be in r l than in r-2

at any time. We might expect that the optimal control strategy mayA

tolerate instability while in the expensive-to-control form r-2, since

* the system is likely to return soon to the form r--l where control costs

are much less. Computation of (3.8)-(3.11) for four iterations

demonstrates this, as shown in Tables 3,4 and 3.5.

K.~)Kk( 2) LK(1) LY(2)

k=N 0 0

-3

ku-N-3 .6990352 9.2692147 .6990352 4.60253x10-

k-N-4 .7187893 10.198343 .7187893 5.06036xl103

Table 3.4: optimal Gains and Costs of Example 3.2.1
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1 - 1LK ()a-b 2L K(2)

k=N- .5 1.998002

k-N-2 .3590264 1.996328

lC=N-3 .3009648 1.9953975

k-N-4 .2812107 1.9949396

Table 3.5: Closed-Loop Optimal Dynamics of
Example 3.2.

These quantities are converging as C-k)-) - Note that the closed-loop

system is unstable while in r-2.

Direct calculation of the expected value of x.k, given x0and o

shows that Ejxk! decreases as k increases. This is shown in Table 3.6.

i 0= if r=2

x 01.0 1.0

x.28121 1.99494

E~x 2 ) .13228 .93844

E{x I .06915 .490573

E{x 41 .04493 .31877

*Table 3.6: E{x Ifor Example 3.2.k
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In four time steps, E{x} is reduced by over 95% in form 1 and 68% in

form 2. Note that if the system starts in the expensive-to-control

form r=2, x is allowed to increase for one time step (until control

while in r=l is likely to reduce it).

Example 3.3: This example illustrates how 'small' errors in the modelling

of transition probabilities near zero or one can cause large differences

in the JLQ optaal controller. Let

x.lk~kif rk1Xk+ +Xk if rkl

Pf r 2

P 12 I P11

PlC P 1 2 small

where N=4

Q1 =1

Q2=0
RI=100

R =C-2

K (1)=0
T

KT (2)=108
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The system starts in form r0 =l. If a failure occurs at time k (that

is, r =2) then a cost
k

2
VK(xk,rk=2 ) = xk Kk( 2 )

* is charged. But since no control is possible in the failed form (i.e,

VK(xkr =2) 2 KT1(2).

we will consider three values of the failure probability P12 here:

Case A: No failures possible P1 2=0

Case B: P =.001
12

Case C: P12 = . 002

in order to examine the effects of small errors in the modelling of PI2'

If there is no chance of failure (Case A) then the optimal LQ

control slowly drives x towards zero (less than 4% reduction in 4 time

intervals). The optimal costs, control gains and closed loop dynamics

(for r=l) in this case are given by Table 3.7.

Kk (i) LK (1) al-bL (1)

kPN-l .99099 .00990099 .99099

k=N-2 1.951267 .0195126 .9804874

k=N-3 2.8666641 .028666 .971334

k=N-4 3.7227191 .0372271 .9627729

Table 3.7: Example 3.3 JLQ controller in form r=l, under
Case A (P 0).12
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If there is'a small nonzero failure probability (Case B p12 001,

Case C p1 2 =.002) then the optimal JMQ controller drives x.k to zero

almost completely in the first time step, as shown in Table 3.8. Thus

a small difference in the value of P 1 2  here makes a large difference in

the optimal controller only if the difference changes the form transition

structure of the system ((Case A vs. Case B) but no'- (Case B vs. Case C)).

K.K~l L(l) al-b Lk(1)

-5
k-H--2 99.990001 .9999 9.9990x10

k=N.-3 99.990002 .9999 9.99801x10 5

k=N-4 99.990002 .9999 9..99801X10- 5

(a) Case B: p1  001 b b(2) =0

K k () L k(l) a 1 -b 1L k(1)

k=N-. 99.995 .99995 4. 999975x10-

k=N-2 99.995 .99995 4.99951xl105

k=N-3 99.995 .99995 4.99951xl0-5Fk-N-4 99.995 .99995 4.99951x105

(b) Case C: P 1=. 002 b b(2) =0

Table 3.8: Example 3.3 JLQ controller in form r=l with
b(2)0O and (a) P12=001 (b) p12=002.
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Now consider what happens when the wrony controller is used in the

above cases, where xO-l and r =1.

F-*

If the true value is p 12=0 and the p 1 2 .O 00 controller is used then

ii - .999002
04

X, 9.98x104

and the achieved cost-to-go is around 99.801, or about twenty-six

times greater than the cost with the correct (p12=0) controller.

I"2

If the time P12=. 001 but the p1 2=0 controller is mistakenly used,

then

X1 .9627729

Efx 1 .9352016
2

Ex 3 .9188873

Ex 9.9087535
4

and the expected cost-to-go is

346290.67

which is around 3400 times greater than what the correct controller

obtains.

In general, sensitivity to small parameters can be expected

if the closed-loop costs are very different in the different

forms and if a small change in the form transition probabilities alters
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the form chain structure (probabilities very near zero and one). Changes

in the controllability structure are reasonable in models of failure-

prone systems. Different cost structures for failed and unf ailed forms are

also appropriate; for example, a system may use expensive back-up equipment

when failures occur. The example system above is an extreme case which

illustrates some of the issues that arise in deriving general

theoretical results concerning JLQ systems.

3.5 The Steady-State Problem

In this section we consider the JLQ Markovian form control problem

(3.1)-(3.5) when all parameters are time-invariant and the time horizon

(N.-k0) becomes infinite.

We wish to minimize

lira E [ R(rkV +,+Q(rk )kl+ x'K T(r.) o
(N-k 0 k k 0 Il k Ni kN r0

r0

subject to (3.12)

xk+l = A(rk)xk + B(rk)uk (3.13)

Prlr k i= p(i,j) (3.14)Sk+l iri

x (k0) =x0  r (k0) =r0

From Proposition 3.1 we have that the opti,-al control laws are

'k- (k-l'rk-1j) = -Lk-l(j)x k -
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with optimal expected costs-to-go

Vk(xrk= j ) = K(j)xk

where for each j e M, and kiN-1,N-2,...,k

LR(j) + B' (j) p(j,i) B (j)
LK (J) K +~ (+ )

B' (j) p(j,i) + A(j

_K +i (i)-

and

M I)(ABi A k(j) (3.16)
Kk(j) A'0) pji) +

1 ~K+l () - j  j

with

KN~i) 'ri

The optimal closed-loop dynamics in each form j e M are thus

hk+l iDk(J)xk

where
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R-.

+3[ B-lij iA

Dk(i) = [B B + P [

Li=l jiK k l (i)) Bj Kk+l1 l

(3.17)

Before stating the main result of this section, we recall the

following terminology pertaining to finite-state Markov chains:

A state is transient if a return to it is not guaranteed.

A state i is recurrent if an eventual return to i is

guaranteed. If the state set is finite, the mean time

until return is finite.

state i is accessible from state j if it is possible to

begin in j and arrive in i in some finite n~mber of

steps.

states i and j are said to communicate if each is accessible

from the other.

A communicating class is closed if there are no possible

transitions from inside the class to any state outside of it.

A closed communicating class containing only one member, j,

is an absorbing state. That is, pjj=l.

64



A Markov chain state set can be divided into disjoint sets

T, C1 ,...,C s where all of the states in T are transient,

and each C is a closed communicating class (of recurrent

states).

Define the cover c. of a form j e M to be the set of all forms
)

accessible from j in ine time step. That is,

c- {iem p(j,i)+0}

The main result of this section is the following:

Proposition 3.2

Consider the time-invariant Markovian JLQ problem (3.12)-(3.14).

Suppose that there exist feedback control laws

Uk =-Fix for each iM

such that the following conditions hold:

(1) For each absorbing form i (ie: Pi =1) the (deterministic)
,2.2.

cost-to-go from (xk=xrk=i) at time k remains finite

(for any finite x) as (N-k)-*-. This is true if and only if

tF t. (Ai-BiFi) (Qi+F!Ri i  iii (3.18)

t=0 . I.

(each element finite).

"See 1 36], p.53.
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(2) For each closed communicating class C. (having two

or more members) the expected cost-to-go from

(xk=x, rkj 6 Cj) at time k remains finite (for any

finite x and each i e Cj) as (N-K) -. This will be

true if and only if for each such class C. there
J

exists a set of finite Positive-definite nxn matrices

(zip... c I } satisfying (3.19):
C

Q+F: R. F.

Zp t.. pt-i (A -B F ) t + (AB F i)

it z
12.~te tt 2 2

' Zi= (lPii)=Pii Pii

(3.19)

for all i 6 C.

(3) For euch transient form i 6 T C M, the expected cost-

"o-gountil the form process leaves T (that is, until

a closed conuunicating class is entered) is finite.

This is true if and only if there exist finite positive-

definite nxm matrices {GG,...,G I satisfying (3.20):
l''T

Q +FI F.
t' t + (A-BFi)t-G. (1-Pii i (Ai-BiFi()-

Z-T - G
.tL i l-pii (3.20)

for all i e T.
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The existence of feedback laws Fi satisfying these conditions is

necessary and sufficient for the solution of the set of coupled

matrix difference equations (3.15)-(3.16) to converge to a unique

constant steady-state set

[K(j)> 0: j 6 M} C3.21)

as (N-k0)- , given by the M coupled equations
0

A.2pji + ) A.

K~j) =
R -l

B. ! ' .K(i))]B 1 B'A
A ji s i  KM i) 3i J1\ /J j L i K iK(i)) J

(3.22) I

for j e H. The steady-state optimal control laws

uk= -Ljxk je_

have time-invariant gains {L.: j E M} given byJ

Li M '. j + A 3 (3.23)
S i p s i  KMiL3" B i p j i Ki)B

and minimize (3.12)- (3.14) with

Vk0(x,r) =xK(r0)x < (3.24)
0 0 0 0

for x'x0 < .
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When the steady-state optimal control laws (3,23)-(3.24) exist, they

stabilize the system in the sense that

Efxk'xk) )-0

as (k-k0)+ m, and K(J)> 0 for each j e M if0

(4) for at least one form i in each closed communicating

subset of M, the null spaces

(_/2)
ni L = (0} . (3.25)

The conditions (2)-(3) take into account

the probability of being in forms that have unstable

closed loop dynamics

the relative expansion and contraction effects of

%* unstable and stable form dynamics, and how the

eigenvectors of accessible forms are "aligned."

That is, it is not necessary or sufficient for all

forms to be stable, since the interaction of dif-

ferent expected form dynamics determines the

behavior of E{x k XkI-

This will be illustrated in the examples of this section. The conditions

in Proposition 3.2 differ from those of the usual discrete-time linear

quadratic regulator problem in that:

necessary and sufficient conditions (l)-(3) replace the

sufficient condition that the (single form) system is

stabilizable

iSee, for example [38], P. 497.
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. condition (4) replaces the assumption that the (single

form) pair (A, Q 1/2) is detectable.

Unfortunately conditions (l)-(4) are not easily verified. There is

no evident algebraic test for (3.18)-(3.21) like the controllability

and observability tests in the LQ problem. The use of the conditions

in Proposition 3.2 will be demonstrated in examples later in this

section.

The proof of Proposition 3.2 has the same basic outline as in

the LQ problem:

(i) First show that conditions (M)-(3) guarantee that

with zero terminal costs (K (j)=0; j e M}, the
N_

sequence of positive semidefinite symmetric matrices

(j)} (for each j e N) in (3.16) is increasing

and bounded above as (N-k 0 ) increases and hence the

KU(j) converge element by element to bounded matrices
0
(N-k) 0

0

Then (3.15)-(3.16) yield the steady-state values

(3.22)-(3.23) and the costs

x K(j)x 0  r0 = j e M

are finite for finite x0.
(ii) Condition (4) is then shown to guarantee that E {Xk'xk }

goes to zero as (k-k0 ) becomes large, and that K(j)>0

for each j e M.
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(iii) Next it is shown that these results hold for

arbitrary finite symmetric terminal cost matrices

{KT (j)> 0 j e MI

(iv) Finally it is easily shown (by contradiction) that

the {K(J), j e M are the unique positive definite

solutions of (3.18).

Once (i)-(ii) are proved then (iii)-(iv) are easily established.

Step (ii) is proved in Appendix B.2. Note that:

Corollary 3.3: The null-space requirement in condition (4) of pro-

position 3.2 is satisfied if, for at least one form i in each closed

communicating subset of N,

.:2.

The difficult part of proving Proposition 3.2 is establishing that

conditions (i)-(3) have the desired effect. Equations (3.18)-(3.20)

follow by a direct application of dynamic programming. The cost-to-go

from (x , rk-i) if i is an absorbing form is

kk

it-o

(where control law gain -F. is used), hence (3.18). For a closed cm-

municating class Cj, the expected costs-to-go from (xk,rk=i) for each

1As in 111], pp. 76-79.
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, £ C are

X., ZXk (i e c,)

as given in (3.19), if these Z are all positive-definite and finite.

Similar arguments yields (3.20). Details of this are given in

Appendix B.3.

In the remainder of this section conditions (11-(3) are

examined and illustrated via examples.

Consider the following simple scalar example problem that shows

how the conditions of Proposition 3.2 can be tested.

EEmle 3.4

Saoo

2 4

k+1 - alrlx.k re{i,2,3,4,5,6,7)

Q(r)> 0

Here

6 is an absorbing form

{3,41 is a closed coumunicating class

T = {1,2,5,7"} are transient forms

ol
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For the absorbing form r=6, 3,18) yields

t
a (6 ) ( a(6) <

t=0

Thus we have condition-

2i) a (6)< .

For the closed communicating class {3,41, (3.19) gives coupled

*- equations

z 3 = a(3)[Q3+Z4] a(3)

• .4  a (4) IQ4 +Z3 3 a (4)

Plugging in for Z4  in the first equation yields

2
= a (3) 2 Q(3) + a2 (4)Q(4)]

1-a (31a (4)

2
a (4) 24 2 2 [Q(4) + a (3)Q(3)]

1-a 3)a (4)

Thus for Z3 , Z4  positive we have condition

2 2(ii) a (3) a (4)< 1
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For the transient forms [l,2,5,71, (3.20) yields

G -a(l)tQ(l) + G Ia ()
1 2

G a(2)fQ(2) + p2 G1  a (2)

t-12t (S72(5
G =(1-p L 7 7

G5 (1P55 t1p5 5Q

Now for 0 < G< we have the condition

2ii) p 5 a (5)< 1

with the resulting

Q(5)a 2(5) (1-p
a = 55

G5 1-p 55 a2 (5)

K.We f ind from the G and Gequations above that1 2

2 2
G, a (1) Q (1)+ a (1)Q0(2) 1

1-a 2(1) a 2(2)p 2 1

2 2
a (2)[(Q(2)+ a (l)p2 1 Q(1)

2 21
2 1-a 2lMa 2(2)p2
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a -

so for 0 < G1, G2 < we have conditions

iv) a2 (1)a (2)P21 < 1

Finally we find 2 2
G7 =a 2 (7)(l-p7 7) Q(7)+ P77 It a (7)P 7 7

so for 0 < G7 < we have condition

(v) a (7)P77 < 1

and

G7  a 2 (7)(1-p 7 7 ) Q + P7 2 a 2(2) [Q(2)+a 2(1)p 2 1Q(1)]I

l7 1-a 27)P (1-p 7 7 ) (1-a 2 (1)a 2 (2)P 2 1 )

Thus (i)-(v) are the necessary and sufficient conditions of

Proposition 3.2. For this example we see that

. The absorbing form r-=6 must have stable system

dynamics (i)

one of the forms in the closed communicating class

{3,41 can be unstable as long as the other form's

dynamics make up for the instability (ii)K transient forms r=5,7 can have unstable dynamics as

long as the probability of staying in them for any

length of time is low enough (iii), (v)
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some instability of the dynamics of form r-l,2

is okay so long as the probability of repeating

a
2-1I 12

cycle is low enough (iv).

From (3.15)-(3.16) it is clear that each {K )} sequence is increasing

as (N-K) increases.

In the proof of the LQ problem, the existence of an upper bound

can be guaranteed by assuming the stabilizability of the system. This

does not suffice here (except for scalar x), as shown in the following

example.

Example 3.5: Stabilizability not sufficient for finite cost

Let M-2 where - .

0 1/2 0

1/2 0
A 2  B B2  0

10 1/2

with P12 "p2 1l-, P11=P22=0 (a "flip-flop" system).

12

21
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.. I

Both forms have stable systems (eigenvalues 1/2, 1/2) and hence are

stabilizable. However

(100.25 ifr='k+2 . if rk~l
5.25 kI

25 5

k+2 ( 0 0 . 2 5 )xk if rk=2

which is clearly unstable. Thus xk and thie expected cost (3.12)

become infinite as (N-k0) goes to infinity.

In fact, controllability in each form is not sufficient, as

demonstrated below.

Example 3.6; Controllability not sufficient for finite cost

Let M-2 where

A 1  (0B 1  (

0 B

=( ) 2=( )
2 0 0

Thus in each form (r=1,2) the system is controllable, and the closed-

loop systems have dynamics

"Ck+l DjXk rkJ
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where c0 2i
f°' D 1 f

"'=(\f3 f4
22

where fit f 2 ' f 3 ' f are determined by the feedback laws chosen.

Now suppose that we have a "flip-flop" system as in the previous

example:

p p =0
11 22

P 2 1  P1 2 =1

Then

X2k =(D2D1) x0  if r0=l

X2 k (DID2 )k x0 if r0=2

where

D2 D1 = ( flf4  2f3+f2f 4 )

\ 0 4

DI2"( 4  0 1

D D
1f:+2f 2  flf 4
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Both D D and D D have 4 as an eigenvalue. Thus xk grows without
1 2 2 1k 1

bound for x 00 as k increases. Controllability in each form allows
0

us to place the eigenvalues of each form's closed loop dynamics matrix

(D.) as we choose, but we cannot place the eigenvectors. In this

example, there is no choice of feedback laws that can align the eigen-

structures of each of the closed loop systems so that the overall dynamics

are stable. The following example demonstrates that (for n>2) sta-

bilizability of even one form is not necessary for the costs to be bounded

above.

Example 3.7

Let M=2 with

Al - B =(O)

1/2
A2  ( 1 B2  ()

Both forms are unstable, uncontrollable systems so neither is sta-

bilizable. We again take

1The closed-loop systems are stable if and only if the moduli of each
eigenvalue is less than one. See, for example, [381 p. 454.
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=l P'22 0

p 2 1

Then

kr1

x2 (AA) x if r2=

x2 (A1 A2 x0 i r0=

where

21 2 1/2 0

2 ~ ~ \,12 0 1/2)

Thus xk goes to zero geometrically as k increases and hence the

cost (for any finite Q , R > 0 j-1,2) is finite. We next show

that this example does satisfy condition (2) of Proposition 3.2.

From (3.19),

Z 2 =A[ Q2 I 11A 2

Suppose, for convenience, that Q 1 Q2 I. Then we obtain from

the first equation above that

(Z 1 ) Z ( 1)) 1+z (2) -1-z U2)+ Z (2
22 )2 11 2 1()11 2 12

Z (1) Z (1) -1-z (2)+ -Z (2 +Z (2) - - Z (2)
1 1 (2)+ 1 21L 2))
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. - -- - - - - - - - - - - - - -< *

and plugging this into the second equation:

zii(2) z12(2) + z Zl(2) + Z 2)

z 21(2) z 2(2) ( +.. iZ (2) 2-L+LZ ()
2 421 4 4 2

This yields four equations in four unknowns. Solving, we find

z( 2): z (2)) 2/3 2/3
Z1 (2) Z2 (2) 2/3 3

and thus

z 1(1) z 2 1 5/3 -/

z z21 (1) z 22 (1) \-4/3 5/3

which are both positive definite. Thus Z1 and Z2 satisfy (2) of
C

Proposition 3.2.

We can obtain sufficient conditions

that replace the necessary and sufficient conditions (1)-(3) in

Proposition 3.2, and are somewhat easier to compute, in terms of

the singular values of certain matrices. For any matrix A,

IlAII = [max eigenvalue A'A]

= max singular value of A (3.26)

00 80
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Note; In the above, I AII is the spectral norm of A, defined as

H1AIl max,_{IlAu1l1 (3.27)

Iluli

over all vectors u of unit length where I ''" II on the right in

(3.27) designates the ordinary euclidean norm of a vector

n 1/2

iiil =l "

Corollary 3.4: Consider the problem of Proposition 3.2. Sufficient

conditions for the existence of the steady-state control law (and

finite expected costs-to-go), replacing (l)-(3), are:

there exist feedback control laws

5 " Fi~ki e m_

such that

(1) for each absorbing form i (p. ---),

t  112 <(

t=O(

(2) for each recurrent, nonabsorbing form i

ti1 (i F tI 2(i X II(-iFi) 11 < c < (3.29)
t=l
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(3) for each transient form i 6 T that is accessible from a

form j e C. in its cover (j~i)

t2(1-.) Pt-1 II(Ai BiFi)t < c < 1 (3.30)
tl

and for each transient form i e T that is not accessible from

any form j e a . in its cover (except itself):
1

(1-p..) I P .1 IM B F )t1 2 < (3.31)

The proof of this Corollary is given in Appendix B.3. A similar result

for continuous-time systems is obtained by Wonham 1 [76 J, except that

stabilizability and observability of each form is required, and a

condition (3.29)=(3.30) is required for all nonabsorbing forms.

Condition (3) is motivated as follows. The cost incurred while in

a particular transient form is finite with probability one since,

eventually, the form process leaves the transient class T and enters a

closed communicating class. If a particular transient form i e T

can be repeatedly re-entered, however, the expected cost incurred while

in i may be infinite; (3.30) excludes such cases. Note that the suf-

ficient conditions of Corollary 3.4 are violated in example 3.7 (in both

forms). This demonstrates that they are restrictive, in that they ignore

ITheorem 6.1, p.195 oi [76].
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the relative "directions" of x growth in the different forms

(i.e. the eigenvector structure). We consider next a sufficient

condition that is easier to verify than (1)-(3) of Corollary 3,4,

but more restrictive.

Corollary 3.5; Sufficient conditions (1)-3). in Proposition 3,2

can be replaced by the following;

For each form i 9 M, there exist feedback control laws

Uk = -FiXk

such that

I IA-B FiII < c < 1 (3.32)1i i

Proof: If this condition holds, then with these F. we have (with

x finite)

0
Ek= X' Q(rk)xk + uk R~x) 1

2 C, 2k.IIxoI max HQ. + F OI)m I 1A -BFill
-Rj kjI =0 -ii

< (constant) c2k <
kO

since c < 1.

Note that if (3.32) holds then conditions (1)-(3) do. Note also

that we are guaranteed that I IXkI I- 0 with probability one, if (3.32)

holds only for recurrent forms. However this is not enough to have

finite expected cost, as demonstrated in the following examples.
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Example 3.8:

Let

A) = B1 )
0 a 0

A2 B2 =(

1 0 0 0

1= (~ 4 Q2 )

withR. =( :) i=1,2

with

D."Pll p P22

.. Pn :-p 2 1  o

P 0

transient absorbing
form form

84
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Thus

min IA 1-9 1  F a >O1
r1

-in lA2 "2211I" 0
P2

and for rou and 2 finite
0'

bckO X.Q(rk Xk , kR (rk) u

- pk 2k Ix 0 H 2

k=O

- tI Ixo I (a p)
k-O C

If

2
ap<1

then the expected cost is

K 2
IIxo 11

0-~ <

1-a p

but if a 2p 5 1 then the expected cost-to-go is infinite. This

dionstrates that (3.32) holdinq only for nontransient forms is not

sufficient. C
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Example 3.9: Let

Xk+1 l xk if rk=1,3

+=( :)Xk if rk=2+1 0 a

(a#0)

where

P1

.1 3= P 22 0

120

P2 3

If the system is in form 1 for three successive times

(r rk+l rk+2  l), then = 0 0) for any xk. The same is

true for three successive times in the absorbing 
form r=3.

In form r=2, the expected cost incurred until 
the system leaves

(at time T) given that the state at time k is 
(xk,rk =2 ) is
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T- t t  A) t
~t~k t~X~QA 2 x

For this cost to be finite we must have

t-l it t
(l-P2 2  P 2 (At) QA 2

22t=l22 ' 22

a2 U-pa 2 t <ac
S 2a (- 2 2) t_ ( 22a

which is true (for Q2finite) if and only if

2a P < 1.22

Thus we would expect that the optimal expected costs-to-go in Proposition

3.2 will be finite if and only if

2a p <1.
22

Let us verify that the necessary and sufficient conditions of Proposition

3.2 say this.

From (3.18), for absorbing form r--3

A AQ 3 A~ <

but

A.(0 for t> 2

so this condition is met.
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For transient forms {1,2} we must have 0 < G1 , G2 < 0

where

t= + G_ l t2

G2 (i_ ) pt-12 (A2 )t Q2 A2

Now

t-1

thus
2 l 2 t

G2 Q2 (1-P2)a j (Pa)

2 2 22 t=0 22

~hence we have condition

2

and G2 = Q2 a (-P 2 2)/(I-P2 2 a2 ). Finally since

(AI ) - for t>2,

,g 88
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we have

G (-P A, Q1 + P12 G2 A1

(1-pl) -1-P22a) A1  '

(1-1 1 [l Qi+ p12 a (i-p22)

which is positive-definite since QI, Q2 > 0. Thus the necessary

and sufficient conditions of Proposition 3.2 here reduce to (i),

as we deduced earlier. Note that the sufficient condition (3.32)

of Corollary 3.5 is never met for r-=l, r=3

i1/2

=A11111A3 11 = 2>1.

and to meet (3.32) for r=2 requires

II 1A2 1 4 2a < 1 =>a 2 < 1

However the sufficient conditions for Corollary 3.4 are met because

forms 11,2} are 'non-re-enterable' transient forms satisfying

(3.31) (if a 2p 1 for r=2),22
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3.6 S

Let us consider the JLQ controller here in terms of the fault-

tolerance criteria of section 1.2. we note that the controller

(3.7)-(3.8) is clearly adaptable (in the terminology of section 1.2),

since a different control law is used in each form. That is, when

a failure or other structural change occurs it is instantaneously

detected (by assumption) and this information is used to reorganize

the controller.

Passive hedging (.the taking into account of possible future

form changes and associated costs) is accomplished via the

M
P Pk(Jl i ) Q ek i)+K(i)]

terms in (3.7)-(3.8). There is no active hedging possible in this

problem formulation because the form transition probabilities

cannot be controlled. With regards to the implementability

attribute of fault-tolerant controllers of section 1.2, the

precomputable nature of (3.7)-(3.8) should facilitate the use of

this controller if M(N-k ) (the number of gains that must be computed
0

and stored) is not too large. When the steady-state controller of

Proposition 3.2 exists, a set of M optimal steady-state gains that

can be used in place of the M(N-k0) gains; this certainly should sim-
0

plify implementation.
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While in each form, the optimal JLQ controller of Proposition

3.1 is endowed with robustness properties derived from the linear

quadratic problem. However the JLQ controller may be extremely

sensitive to small errors in the modelling of form transition pro-

babilities, if the probability in question is close to zero or one

and if the controllability of the dynamics changes between forms,

as illustrated in example 3.3.

Proposition 3.2 provides necessary and sufficient conditions

for existence of the optimal steady-state JLQ controller. These

conditions are not easily tested for nonscalar-x problems, however

since they require the simultaneous solution of coupled matrix

equations containing infinite sums. In Corollaries 3.4 and 3.5

sufficient coditions that are based upon singular values are presented

that are somewhat more testable for some problems. However the

derivation of easily calculable conditions for the JLQ steady state

problem (like the controllability and observability conditions of the

LQ problem) remains an open question.
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4. EXTENSIONS OF THE X-INDEPENDENT JLQ PROBLEM

In this chapter we develop two extensions of the JLQ problem

formulation. Our purpose is to indicate how the ideas and results

of Chapter 3 can be applied to more general problems. We will con-

sider here only problems with form processes that are not explicitly

x-dependent. The more difficult cases of x and u dependent forms are

the subject of Parts III and IV of the thesis.

In section 4.1 we consider JLQ problems with additive input noise

to and noisy observations of the x subsystem (but perfect observations

of the form). As in the LQ problem, a separation result holds. The

only complication is that the parameters of the estimator of x (from
k

noisy observations) depend upon rk, and thus cannot be comput&

off-line.

In section 4.2 we widen the range of physical situations that can

be captured by the JLQ control problem by including in the problem

formulation Jump costs and x-resets when the form changes.

4.1 The JLQ Problem with additive input and x-observation noise

In this section we extend the JLQ problem of Chapter 3 to include

additive white input noise, and we assume that a linear function of

is observed at each time k in the presence of additive white noise.

Under the crucial assumption that the form process is perfectly observed
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at each time k, the optimal control law is the same as in the noiseless

case but it acts upon an estimate of the x process. This estimate

is obtained by a Kalman filter, where the update parameters are deter-

mined at each time by the observed form value.

We are considering the discrete-time jump linear system with

additive driving noise:

Xk 1  A(rk)x + BCrk)u + (rk)vk  (4.1)

Pr{r klJrk-i} =P ij e M
k-I- k ij

where

x(k) =x
0 o

r(k) = r0

Pij > 0

M
I p j=I Vi, j e M

j=l i

M = {l,2,...,M}

Xk 6R n  e

k=k0 , k0+l,...,N

At each time we observe rk perfectly and a linear function of

xk contaminated by white observation noise:

Yk = C(rk)xk + D(rk)u + A(rk)wk (4.2)
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In (4.1)-(4.3), Vke Rm  and wke R . The input noise sequence {Vk}

and observation noise sequence {w are white, Gaussian with
fkl

nE{Vk}=0 Y k

E£=. V,k

E{w k}=0 Vk

k
E(wWW} = I kzk Vk, Z

1I Z=k

and are independent of each other, of the form sequence {r k

and the initial condition x0 . Here

E{x o } = x
0 0

E{ [x -x0 1 Ix -x0 = '0

and x0 is independent of the (deterministic) r0.

We seek to minimize the cost criterion

N-1

kik "
J (x ,r )=E 0 x Jxrk 00 + ( k+l~'xk+l +P(rk~l 0 0

(4.3)

+ x'K (r N)x + HT (r N)x + G TCrN
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Note that we have xk and terms in (4.3). These are included

here for later comparison with the x-dependent form problems in

Part III of this thesis. In (4.1)-(4.3) we take, for each i e M,

R(i) > 0

Q(i) S'(i)/2
> 0

S (i)/2 P(i)

(4.4)

iT (i)/2 ST(i)

o>O0
0

The term

x'K (r )xN + H T(r N)xN + G T(rNNTNN NN T N

in (4.3) is a terminal cost charged in addition to the time-invariant

cost

xN'Q(r N)xN + S(r N)xN + P(rN

The control problem is then to find the control law

uk = k(y(k0 ) ,. . . ,y(k) ; r(k 0 ),...,r(k)) (4.5)

that minimizes (4.3). As in the linear quadratic Gaussian (LQG)

problem the optimal solution to this problem satisfies a separation

principle. In particular we have the following:
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Proposition 4.1

The stochastic JLQ problem with incomplete and noisy measurements,

as in (4.1)-(4.5) has the following solution. The optimal control

law is given by

kl (xkllr klj) = -1 (j) '1 + 1 (j) (4.6)

The control law parameters in (4.6) are

= B ()~(+ Bj B' (i)k. (i)A(i) (4.7)

1 hR)L~ 1 ()(48

Fk(j) 2 + L.jHkj (4.8)

for k=N-l, N-2, ... ,k 0  and i e M where {Lk(i),Fk(i)} are computed

recursively, backwards in time from k=N, by the following sets of

M coupled matrix difference equations:

A'(j () (~ [I + 1 (j )B (j) A(j)

Kk~l (4.9

[ R(j)1
HH (j I-BJ + IjKk, A(j)

B[ j JjBj (4.10)
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where

M
=~ ~ PJ)Ekli+Q i)] (4.11)

i=l

M
(j) P(i,i) [Hki)si) (4.12)

with terminal conditions

KN (j) =KT (j) (4.13)

H N () =H TC() (4.14)

The optimal (minimum mean square error) estimate xkin (4.6) is

given by the following form-dependent Kalman filter:

extapolation xk(-) =A(rkl)xkl.4.(r k-)ukl1 (4.15)

error covariance 1-)=Ar P
extrapolation k kik-i (k-l)'(k.)

+(r )

k-i y (l)(416

X-estimate A r k- C~kxk( (417update Xk xk k1 Prk tD(rkul J(.)
error covariance
update kP (r k k '- (r k)C(r k' HT -) (4.18)
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* . .7 1*- . 1- -.--- - - - - - - ---

filter gain r (rk) = k (-)C +

matrix k(r(rkTkf

A (rk ) A (rk (4.19)

with initial conditions

(-) = x0  (4.20)
0

k 0 1 ) = 0 .(4.21)

The optimal expected cost-to-go is

Vk 0(x0 ,r 0 ) = XFk (r 0 )x 0 + H (r)x
0 0 00

+ G k(rr) 0 0)T0 ]
0 0N-1 r)L~k

+ tr fk (r)L +(rk) l(rk)B(rk) Lk(rk){
k=k 0

(4.22)

where

GklJ) = +lJ) + Z p(ji)tr H +
GO k kinl

-~ A R(j)
4 Hk+l( + B'(j)H +l 0 )

B' (j)^K-k . (J ) B ( j ) .( . 3
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with

G (j) p(j,i) [Gk U) + P(i)] (4.24)k+l = ~~)Lk+13) z~J

and terminal condition

G(j)=G(j) jeM (4.25)N T_

At each time k-N,N-1,...,k
0

((J) Hk J)2> 0  (4.26)

Hk ( j ) / 2  ()/

This is proved in Appendix B.4.

Note that the control law is unchanged if there is no obser-

vation or driving noise (ie., -(j)=O, A(j)=O, vJ e M). That

is, the certainty equivalence principle applies here.

4.2 Jump Costs and Resets

In this section we extend the range of problems that can be cap-

tured by the JLQ problem formulation. Specifically we consider

problems where

Sjmp costs are incurred when the form changes

from r to r at time k
k-l k
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U the value of the x process may be reset
to an affine function of its current value

when the form changes.

Jump costs might represent start-up or shut-down costs of equipment

when the system form changes. They might also model undesirable

transient phenomena such as load shedding costs in electrical power

systems, or the cost of equipment destroyed by the form change.

The resetting of x allows us to model failures that result from

abrupt changes to the dynamic state of the system. For example,

phenomena such as failure-caused biases in communication equipment or

rapid voltage jumps due to changing interconnections in electronic

devices can be modelled by resets of x. In addition we can use resets

to represent nonlinear systems as a collection of linear systems, each

associated with a different operating point. The x process might re-

present the deviation of the state from the current nominal value. If

we assume that changes in the operating point are caused by external

events (and are not x-dependent) then the results of this section can

be applied. The x-dependent case is treated in Part III.

Consider the following class of jump linear systems with affine

resets:

+= A(rk)xk + B(rk)uk + --(rk)vk (4.27)

Pr{rk+l=J = Pij i,j 6 M (4.28)

tkk



Xk+l A(rk rk+l)ck+1 + Z(rk ,r k+ (4.29)

We will assume in this section that the state process (xk,rk) is

perfectly observed at each time k. The problem is to find the

optimal control laws

S= k(X 0 '..., ;ot ... rk) (4.30)

that minimize

N-1

(x r) 0 E ' R(rk) uk + x!(rk rk )x 1
0 k=k0

.+ S(r Irk+l)x+ 1 + P(rk, rk+l)J x0 ,r 0

+ x'K (rN1 ,r )x N + HT(r Ir)xN

+ G (r r)
T N-l'

(4.31)

Jump costs enter into this cost function through the dependence

of Q, S, P, T, HT and GT on both the "old" and "new" values of the

form. That is, we can assign a different x-cost to each form

transition as well as to each form, if desired. Here the time-

invariant parameters

R(j) >0 (4.32)

( U S(i,j)/2
1>0 (4.33)

S(ij) (ij/2
I 1i014
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and

KTij) H; U, j 1>0 

H T(i, j)/2 GT (i, j)

for all i,j e M.

To find the optimal control law we apply dynamic programming.

We have

VN [XNr rIrN] =XKT (rN~lrN)xN + HT(r,,IrN)xN

(4.35)
+ GT(rNr)

T -l rN)

UNlR(j)uN_1
-- . VN -1[xN_ I rN_ l=J ]-- -ra n  +

VN-l N- r 1=Jmn-+ UN1 xNQ (J 'rN) XN XN-1
+ (4.36)

E- S(ji,r)x + P(j,r N) rNl=j

NV [XN' rNlJ'rN]

and for k=N-2,...,k 0

UkR(j)u
k

Vk(Xk, rk=j )=rin +

"+lIJrk+l)k+l Xk (4.37)

E S(Jrk+l)xk+l + P(j'rk+l) rkJ

+

k+l k+1l k+l)
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Using (4.29) (4.31) we can rewrite (4.37) as Vk(x.k'rk~j)=

A~j.xR (jj ) U
A~j~+ + 1~~i

mi Li( vj x
kp (j, i)E L L= vj E j~v

+ Z(j~i) + z(j,i)

+

P0j1i)

Vk+l tAji{~~,+(j)uk+:E(j)vk}+Z(j'i)Ii]

(4.38) -

Solving (4.38) recursively for the optimal control sequence

then yields the following:

Proposition 4.2: For the problem (4.27)-(4.34) the optimal control

law is given by

uk-l(xk-l'rk-lj) = Lk l(j)xk-1 + k-l(i)(.9

for k=N, N-l ,...,k +1 and the optimal expected cost-to-go is
0

Vk(x]r =j) V xk~(j)xk +i H k(j)Xk + G k(i) (4.40)

for k=N-l, N-2 ,...,k 0 for each j e M, where the paramieters in (4.39)-

(4.40) are computed recursively, backwards in time, by
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R~j)

Kk~j A'() [1 ()[I- (j) BIj)Bj (iK~()] j ~) (.1B(j(j) B k1A(j) (4.42

[R~)jj
Hk~ H G- (j) B' (j)K (j) (4.4(2)k() k+1 4j k+1 [B(iK~ iBij)

M' (j)K ()B()

[ R~j)R1.-

G ( [k~l () + 1 (i)()B'j CK+ BiA(j) (4.44

Fk~i = ~['~j~ 1 iBjjB' () K .(j) (4.45)

as in ropostion .1,(bt.wit

" i)

= ~ ~ B (j)iA(ji [+]A (~i) (4.44)

-10



S~j~iS

z' (j, ) [kl Ci)] '

+

[H (i) + S(j,i)]Z(j,i) (.8
k+l

Ek+l Ci) +P(j'i)l

and terminal conditons

K (j,i)H
M [

K- (j iL' SAj(i)]} (4509)
'-1 Q(j~i

V~ 0,) 1i)H

MTT

[H~ +ji + Sjjilzi)i

H+j ~ ~ ) 2'ji (4.50)

[G~ ~ (ji (j,i)]
T

Z101) + 105i



At each time k=N-l,...,k 0

C(j) H' j)/2

> 0 (4.52)
Hk(j)/2 Gk(j)

C
Comparing this result with Proposition 4.1 in the noiseless case

(ie, _7(j)=0, A(j)=0, Vj E M) we see that the cost andcontrol laws

1Aare the same but the definitions of 'k+1 (J), H k+(j) and G k+l(i)

are different. Note that

* the A(j,i) (linear reset) parameters enter

into all of the cost and control law terms

4'b (as do the Q(j,i)'s)

* the Z(j,i) (constant reset) parameters do not

affect the linear gain of the optimal control

law.

The following example illustrates some of the qualitative effects

of jump costs on the controlled system's behavior.

Example 4.1:

Consider the following problem:

'k+l'k + uk if rk~l

2x + uk if rk 2

For deterministic xk
0
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p(l,l) = .9 p(1,2) = .1

p(2,1) = .9 p( 2 , 2 ) = .1

with

(N-1 ,

2: 2

mi E ukR~(rKkl + Xk+1 Q(r-r.
0-.k 0

where

R (1) =1 cheap to control when rk=1

R(2) =1000 expensive to control when

r =2

if we tak~e

":l1i = Q(1,2)=l Q(2,l) Q(2,2) l

ie, no jump costs) then we have the same problem as example 3.2.

The optimal JLQ controller parameters and the closed-loop dynamics

for this case are listed for four time stages in Tables 4.1 and

4.2, respectively.
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Kq

..

K=N 0 0

K=N-l .5 3.996004 .5 1. 998x10 3

K=N-2 .6490736 7.384818 .6490736 3.67203x10 - 3

-3

K=N-3 .6990352 9.2692147 .6990352 4.60253xi0

K=N-4 .7187893 10.198343 .7187893 5.06036x10-3

Table 4.1: Optimal Gains and Costs of Example 4.1

[-'" a (i)-b (i) Lk(1) a (2) -b (2) Lk  (2)

K=N-l .5 1.998002

K=N-2 .3590264 1.996328

K=N-3 .3009648 1.9953975

K=N-4 .2812107 1. 9949396

Table 4.2: Closed-Loop Optimal Dynamics of Example 4.1.

Now suppose that there is a jump cost charged when the form changes

from r=l to r=2. Take

Q(1,2) = 2

Q(1,1) = Q(2,1) = Q(2,2 )=l
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The optimal controller parameter and closed-loop dynamics

for this case are listed in Tables 4.3 and 4.4, respectively.

Note that the additional expected cost-to-go caused by this

penalty is slight: about 1.25% greater from rN-4=l and 0.70%

greater from rN_4=2. Comparing Tables 4.2 and 4.4 we see that

in form 1, the closed loop optimal system drives x to zero a little

more quickly when this jiup cost is present.

-3
N-1 .5238095 3.996004 .5238095 1.998xi0

3

N-2 .6634162 7.4701392 .6634162 3.73506xi0

N-3 .7096495 9.3545273 .7096495 4.67726xi03

-3
N-4 .7278253 10.270011 .7278253 5.135x10

Table 4.3: Example 4.1 with Q(1,2)= 2.

k a (1)-h (i) Lk(i) a (2)-b(2) (2)

N-1 .4761905 1.998002

N-2 .3365838 1.9962649

N-3 .2903505 1.9953227

N-4 .2721747 1.9949865

Table 4.4: Closed-Loop Optimal Dynamics when Q(1,2)=2.
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Now suppose that the jump cost is high. Take

Q(1,2) = 1000

Q(1,1) = Q(2,1) = Q(2,2) = 1

Then the optimal strategy in form 1 is to drive x almost completely

2
to zero in one time step (incurring a cost of about u R(1)=l).

The optimal strategy in form 2 remains the same; almost no control

is used. The optimal cost and control law parameters for this

high jump cost case are listed in Table 4.5, and the closed-loop

dynamics are in Table 4.6.

kc K k(1) K.k( 2) L k (1) T.k(2)

N-1 .9901864 3.996004 .9901864 1.998x10 3

-3
N-2 .9903092 9.1421301 .9903092 4.57196x10

-3
N-3 .9903573 11.190689 .9903573 5.594534xi0

N-4 .9903763 12.005421 .9903763 6.00271x0 -3

Table 4.5: Example 4.1 with Q(1, 2)=1000.
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k a(l)-b(l) L(l) a(2)-b(2)Lk(2)

N-1 9.8136x10-3  1.998002

N-2 9.6908x10 3  1.995428

N-3 9.6427x10-3  1.9944055

N-4 9.6237xl0 3  1.9939973

Table 4.6: Closed-Loop Optimal Dynamics when Q(1,2)=1000.

4.3 Summary

This chapter completes our study of JLQ problems with

x-independent forms. As we have shown in this chapter and in chapter 3,

the linear quadratic optimal control problem formulation can be

extended to jump linear systems in a straightforward way, provided

that the jumps are x-independent and perfectly observed.

In parts III and IV of the thesis we will consider JLQ problems

that involve form changes that are x-dependent, either explicitly or

through controls. As we shall see, the structure and behavior of the

optimal JLQ controller becomes much more complex in these cases and

displays features not captured by the problems studied to

this point.

'A
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PART III

THE SCALAR X-DEPENDENT NOISELESS

JLQ CONTROL PROBLEM

112



*5. SCALAR JLQ PROBLEMS WITH X-DEPENDENT FORMS

5.1 Introduction

In this chapter we examine a class of nonlinear stochastic control

problems that capture the active hedging issue of fault-tolerant

optimal control. The problems under consideration are scalar-in-x JLQ

problems with form transition probabilities that depend on x.

Specifically, we consider

form transition probabilities that are (or

can be approximated as being) piecewise-

constant in x.

For this class of problems we develop a recursive procedure for the

determination of the optimal expected costs-to-go and control laws

"off-line," in advance of system operation. We also establish a number

of qualitative properties of the optimal controller.

The optimal expected costs-to-go are piecewise-quadratic and the

control laws are piecewise-linear in xk, in each form. That is, the

real line is partitioned into a number of intervals of x values

1.pieces ), and over each such interval Vk(xk,rk=j) is quadratic in

and ux,rk=j) is linear, for each form j e M.

For each j e M at time k the expected cost-to-go V(xkrk=J) and

control law uk(xkrk=j) have the same number of pieces, mk(j). In

general this number grows as (N-k) increases. A typical expected cost-

to-go and control law are shown in figure 5.1.

fIn this chapter the term quadratic in x is used for functions of the
2 x

form a0+alx+a 2xk; the term linear is used for functions of the form

1 +a "
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FIGUR~E 5.1: Typical curves of (a) Vk (xklrkj) and (b) kxr

with ntk(J)=5 Pieces.
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The different pieces of Vk(xk rk=j) and uk(xkrk=j) arise from

using the control to actively hedge. Intuitively, at each stage the

optimal controller must take into account what the expected cost of

driving x into different regions will be, where different values of the

form transition probabilities apply. As the control problem is solved

backwards in time from a finite terminal time (using dynamic programming),

the controller must take into account what the effects of active hedging

will be at the intervening times.

The procedure that is developed here for computing the optimal

mk(j), Vk(x,rk=j) and uk(xk,rk=j) (inductively, backwards in time for

finite time-horizon problems) involves the computation and comparison of

a growing number'of quadratic functions at each stage and for each

j e M . These quadratic functions are computed via Riccati-like dif-

ference equations. All of these computations can be done off-line, as

in the x-independent JLQ problem.

The basic idea of this solution procedure is simple; essentially

the nonlinearity of the system dynamics (due to the x-dependence of

the form transition probabilities) is converted into computational

complexity in the determination of Vk(xkrk=J). It is the 2iecewise-

constant structure of the form transition probabilities that allows 4s

to do this.

At each time stage k, the control problem involving the determination

of Vk(,k,rk'j) for a system having the full hybrid structure (as pictured

on the left of figure 5.2) is transformed into the comparison of many
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FIGURPE 5.2: Conversion of nonlinearity into computational complexity.
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constrained-in- x+i JLQ control problem costs with x-independent

form transitions (as pictured on the right in figure 5.2). One

constrained problem arises for each reqion of xk+l values having dif-

ferent

* form transition probabilities out of j

(pji, i e Cj)

* different pieces in the expected costs-to-go

at the succeeding time (i.e., Vk+ (xk+lrk+l=i)),

for each form in the cover of j (i.e., i e C.).

The number of costs-to-go that must be compared at each stage, and

the number of pieces, mk(j), in Vk(xrrk=j) grows

. at most linearly with the number of transition

probability pieces

at most geometrically with the number of forms that

are accessible from form j in one time step.

The "piecewise" structure of the optimal expected costs-to-go and

control laws is caused by the piecewise-constant structure of the form

transition probabilities.

The solution procedure developed in this chapter provides an

"approximately optimal" controller for problems where the true x-depen-

dent form transition probabilities have been approximated in a

piecewise-constant way. Clearly this approximation can be made
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arbitrarily close to the true controller by using a fine enough

piecewise-constant approximation. Thus there is a tradeoff between

accuracy of the form-transition probability

approximations (and the resulting optimal

controller)

VS.
computational complexity in the off-line

determination of the optimal controller and

in the number of controller pieces mk(j)

that must be implemented on-line.

*. Although the basic idea of this chapter is simple, the derivation

* .and presentation of the general result involves unavoidably complicated

notation and "bookkeeping" problems. For this reason, this chapter

has been organized as follows:

1. In section 5.2 the general problem is formulated.

2. In section 5.3 one-stage of a simple problem is

solved from first principles

3. Guided by intuition gained from this example, a

general solution procedure is developed in section

5.4 and certain qualitative properties of the

optimal controller are established.

4. In section 5.5 this solution procedure is used to

solve the next stage of the example problem.

5. In section 5.6 a number of combinatoric properties

(i.e., concerning the number of pieces of the optimal
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solutions, etc.) and qu&litative

properties of the optimal controller are

established. These results are motivated

by the example problem.

From the study of the optimal controllers developed here we can

gain insight into the structures of controllers that use active hedging,

and into the qualitative effects of their control actions,

In chapters 6 and 7 the results of this chapter are used to in-

vestigate a number of additional qualitative properties of the controller;

in particular, steady-state behaviors are examined. In addition, an

algorithm flowchart that efficiently performs the calculations specified

in section 5.3 is presented. In Part IV this algorithm is extended to

include more general jump linear control problems.

5.2 General Problem Formulation

In this section we present the general problem formulation that

is addressed in this chapter. We restrict our attention to the time-

invariant case so as to simplify notation somewhat. All of the results

of this chapter can be directly extended to the time-varying case.

Consider the discrete-time jump linear system

xk+l=a(rk)xk + b(rk) uk (5.1)
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Pr{rk l'Jrk--i, xJfx p(i,j;x) (5.2)

x(k) =x r(k r
00 0 0

Each transition probability p(i,j;x) Of the form process is assumed

to be piecewise-constant in x, having a finite number of pieces

That is, the real line is partitioned into V.. disjoint intervals

with the transition probabilities taking constant values over each

interval:

p(i,j;x) (S) (5.3)

if

-.. (s-1) < x <V.. (S)

where

S
A)

- = i (0)< V ij (1) <...< vi (-v ij-1)< V ij (V = 0 (5.4)

These grid points v.. (s) may be different for each pair

(i,j)e m x M. For all s=1,2,...,ij

x. (s)> 0 for each i,j e M

M
X X..(s)=l for each i e M

j=l3

A typical p(i,j;x) is illustrated in figure 5.3.
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The form process is not Markovian because of its dependence

on x. However the joint state process {xrk k=k 0 ,....N} is

Markov. It is assumed that the state (xkrk) is perfectly observed

at each time. The problem is to find the optimal control laws

-uk k(X0, .. ,xk r0 ,.--,rk)

that minimize the cost criterion (5.) below:

pl i,j x)

II

:.vij(t) glij(2) 0 Vij (3) 31ij(4)
w -

em -

II

FIGURE 5.3: Typical piecewise-constant transition probability.
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[ R(rk) + QT (r

where ~N- th xettoni vruk0,., N .k~ Sic (k~k:kk0°.N

Jk (x Ir)= E + 1
k~ 0P +S(r(55

0 C kk0k+lxk+l+

+ x 2KT (r + H (r )(r
NT N TN N TN +i)N

where the expectation is over r I th Since {(xkrk): kekh...,N

is a Markov process we need only consider feedback laws of the form

uk YNkxkrk)

Here

R(i)> 0

QUi) S'(i) /2
> 10 (5.6)

S (i) /2 pc(i) /

KT(i) H'i/2)(H (i)/2 G Ui))>0
T T

for each i e N. We will assume here that b(j)#0 for each j e M.

1The result for forms where b(j)=0 (that is, the system just "coasts"

in form j) is presented at the end of Appendix C.2. This result is

used in some of the examples in chapter 6 and 7.

1
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The term

X2KT(r) + xNH (r N ) + G (r
N N) T N) T N)

in (5.5) is a terminal cost charged in addition to the time-invariant

cost

2 (XNQ r N ) + xNS(r N ) + P(r N )

The xk and xk terms (xkS(r), P(rk), XH(r) and (r)) are
k)' Ick k NT N TrN)

included in (5.5) because they naturally arise in the computation of

the expected costs-to-go. Even if the x-costs in (5.5) are simple

quadratics(i.e., S(i) = P(i) = H (i) = G (i)=O), some of theT T 1
quadratic pieces of the optimal expected costs-to-go will have xk and

0

5.3 One Stage of an Example Problem

In this section we solve one time stage of a simple example

problem satisfying (5.1)-(5.6). This is done to illustrate the basic

solution idea alluded to in section 5.1, and to gain insight into the

qualitative properties of this class of problems. A number of obser-

vations and claims inspired by this example are listed at the end of

this section for later consideration.
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Example 5.1: Consider the following system having M=2 forms:

xk+l = N +uk if rk--

= l -- 2xk +uk if rk -=2

p(1,2:x) = 1/4. ixI<l
13/4 lxl>l

p(1,1:x) = 1-p(l,2:x) p(2 ,2)=l p(2,1)=0

We seek to minimize

IN-1 (u2 x2 + x2K (r

in Ek + N T Nu0 P.. ,u_ (k=0
0 N-1

where K (1)=0, KT (2)=3. The form structure and form transition

probability p(l,2:x) for this example are shown in figure 5.4.

The values rl and r=2 might denote, respectively, "normal" and

"failure mode" operation. The K T(2) parameter represents a penalty

charged for failure of the system. The probability of failure

p(l,2:x) is low for small magnitude x, and larger if jxl>l.

Once the system fails (attains form r=2), it stays there. In

this form the usual LQ solution applies. The optimal (deterministic)

cost-to-go is

Vk(xk~r =2) (2)
kk  --k 2

for k=N,N-I,...,0 where
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2. 1:)2,2)=1

p(1,I:x)

(a)

p(0,2:x)z pr rfailIure}

3 3

4 4

-I I x

(b)

FIGURE 5.4: Example 5.1: (a) form structure, and (b) transition

probability p(i,2:x).
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p--L

KN( 2 ) = KT(2 ) =3

2a (2)R(2) [k+l(2)+Q(2)] 4( k+l(2)+1)

R(2) +b2 (2) [ +i (2) +Q(2) (2)

and the optimal control law in form r=2 is given by

uk(xk'rk=2) = -Lk(2 )xk

where

a(2)b(2) [ +l(2 )+Q(2)) 2(K+i(2)+l)
L- (2) RC2)+b 2 (2)[ [ (2)+Q (2)] 24 k+l (2)

Here we have quick convergence as (N-k) decreases, to

Kk(2) -1 + /5 3.236068%I +

Lk ( = 1.618034-- 22

as seen in Table 5.1, below.

k K (2) LK (2)

N 3

N-1 3.2 1.6

N-2 3.2307692 1.6153846

N-3 3.2352941 1.6176471

Table 5.1: Kk(2) and Lk(2) for example 5.1.
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Now we examine what happens when rN =1. We are given that

2N(XN,rN=1) = XNKT(1)=o.

Now consider the situation one stage back in time. With probability

p(1,2:xN) the system will switch to form 2 at time N, and we will be

charged

KN(2)
2 2)

With probability [1-p(1,2:xN)] the system will stay in form 1 and

we will be charged

2 T l2

N + N

In addition we will be charged a control cost

N- _R(1) -- UN_ 1

for whatever control we choose. That is,
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u 
2

N-1

V (x ,r =1) =mm. 2
VN-i N-i N- l )  P(=nl;xN) [XN+VN (XN, rN=1)]

UN-1
+

p (1,2 :xN)x [2VN (Xr=2)]

2

N-1

min
2

p(1'2:x N )xN

Note that we can control the failure probability p(1,2:xN), and thus

the cost incurred at time N, by our choice of xN (through the choice

of UNJ) It is this point that makes VNl(xN lrNl1) a non-

quadratic function of 'N_1 . However, as we have indicated,it is

piecewise quadratic and this is a direct consequence of the piecewise

constant nature of p(i,j;xN). The basic reason for this is actually
N

quite simple and by going through it we can obtain an initial

understanding of the nature of the problem.

Suppose that xN_1 has a given value. Then, by applying our

optimal control, one of three things will happen: either xN<-l or

-1+< xN < or xN > 1+. In each of these cases the cost

2 2
p(ll;xN)xN + p(1,2;xN)4xN
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is a quadratic function of xN. Consequently this suggests the

following strategy for computing VN(xN_ ,r =1) and the
VN-i -l N-i=

associated optimal control law:

For each of the 3 possible regions, solve the

constrained optimization problem assuming that

xN is in the specified region. As indicated

above, each such constrained problem is quadratic.

Once we have the solutions to these problems, we

compare them and obtain the optimal solution by

choosing the smallest of these for each value of

XN_1 . AS we will see the result is a piecewise

quadratic cost-to-go and a piecewise linear

optimal control law.

As we have indicated, in this example there are three xN regions:

(1) xN <-1 where p(1,2:xN)=3/4

(2) -i N x < +I- where p(i,2:xN)=i/4

(3) 1 < x where p(l,2:xN)=3/4
XNN

The three corresponding constrained control problems are

N-u 2 +t13 2
V (x ,rN=I1) = m + -

N1N-i N-i N-i1 4 N
SS-i St (5.7)

N-1
XN 1
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,. .2 7 2

V (x V 1 2)-inx <1 -I+N- I - N- - i

<: N-i N-i r l jl 3) - n --
V (x1st. N-i 4 N

(5.9)
+

.1 <xN-1N-~~~~ ~~ N-i-1'.. = N

Note that the costs in the first and third regions of xN values are

the same, because of the symmetry of p(1,2:x) about zero.

Consider the second X region:

-i < xN < 1

Differentiating VN- (XN-l,rN l=112) in (5.8) with respect to NiN-i N-i N-

and setting the derivative to zero, we find that

u-(xN) =-.6363636 x (5.10)
uN-i N-i N-i

with the resulting cost

2
VN (xN) = .6363636 x (5.11)
VN-i N-1 XN-i

But this uN_1 only solves (5.8) if the xN that results from it

obeys the constraint

-i +  x <-xN
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That is, we must have
1

+
-i <X =XN_1  -. 6364 X <1

'N N-1N-i

which holds if and only if

-2.75 < XN-l < 2.75

For XN_ > 2.75 the best value of xN in the interval (-1,1)

isx 1. This is achieved if
N

x -a(1)x(X ) N N-1
UN- N-1 b(l) =1 XN-1

and the resulting cost is

2VN- (xN 1) =xN - 2xN-1 + 2.75 (5.12)

Similarly, for XN-1 < -2.75, the best value of xN in the+t

interval (-i,1) is at x = -i. This is achieved with
N

_ + i

(N- -lN = - - xN-l

and the resulting cost is

VNI(xNl) = N 1 + 2XN + 2.75 (5.13)

-Rounding numbers to four significant digits.
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Thus the optimal cost-to-go of (5.8) (where xN is constrained to be

in (-1,1) has the three-piece quadratic form of figure 5.5.

The unconstrained cost of (5.11), as a function of xN I , is

indicated by the dashed line. It applies for x_1E(-2.75, 2.75);

this is indicated by the solid over-line.

The constrained cost (5.12), corresponding to making xN=l- is

depicted by the dot-dash line. It applies for xNl > 2.75, as

indicated by the solid line.

The constrained cost (5.13), which results from x =-I+, is
N

represented (as a function of xN_) by the dotted line. It applies for

XN_ 1 < -2.75.

Note that the constrained costs ((5.12),(5.13)) are greater than

the unconstrained cost (5.11) except at a single point. At this point

their values and their slopes match. This fact will be of interest

later in this chapter.

The other two constrained control problems (5.7), (5.9) can be

solved as we have done above for (5.8). Their solutions have only

two quadratic parts because xN is not constrained in one direction.

The optimal expected costs-to-go for all three problems ((5.7)-

(5.9)) are:
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i ii

r 12)i" i~~~IVN.I (XN-1, N_1 =Io)

101

I 9 -1

.N-. I t.I+<XXNN _

\ 46 If" 3'

-6 -5 -4 - -2 - 1 2 5 41

__~~~ XNIN " ._X= -  i

-2.75 2.75

FIGUE 55: N~i(X lr l1 12) of example 5.1. is indicated by the solid

FIGUR \.5 N-1 N-' -

,,overline, where the dotted line represents the cost of driving

to xl n, the dot-dash line represents the cost of driving to

XNl- and the dashed line indicates the unconstrained solution

of (5.8).
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.76705 2 if XN <-4. 25) ~N- 1-i

N-i N-1N-

(5.14)

x 2x_2- < fx -2.7 5

.34 x2 if -2.7 5 <x <2.7 5

'N-i ( N-i'12 N-i1 N-1-

2
x l 2 x +2.7 5 if x > 2.7 5

N1 N-i N-i

(5.15)

2 -2x +4.25 if x <4.2 5
N-i N-i N-i1

'N- (x ,l {J) 7647 2 if x >.2

XN-i N-1i 4

(5.16)

These costs are shown in figures 5.6, 5.5, and 5.7, respectively.

Having solved the constrained problems (5.7)-(5.9), we are now

ready to compare them:

VN-.l (xN~i 1rNi=i) mi VN~l(xN~~ rN 11 1t)

This is done graphically in figure 5.8.

Choosing the lowest of the three constrained costs at each

x N ~ value, we see that:
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VN1I(xN-l,rN..l 11

-4.25

FIGURE 5.6: ( x ,r 11 of example 5.1 is indicated by the solid
VN-i N-i' N-l ii
overline, wherethe dot-dash line represents the cost of driving

to xN=_ 1 and the dashed line indicates the unconstrained

solution of (5.7).
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I/Z

_13.81-* I
0 x

P4-xN >1i

S 3.25.01

-6 -5 -4 -3 -2 -1 1 2 3 4' 5 x-
4.25

FIGRE .7: VN- (N-l"INl11 3) of example 5.1 is indicated by the solid

overline, where the dot-dash line represents the cost of

driving to xCN=1 and the dashed line indicates the unconstrained

solution of (5.9).
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V N _1  (X N 1  , r 1  = 1 )

-34.84

*."

-6.5 -
XN-1

*.N1X N-

N- N-1

,..%->425 * -N

.- , ..\-/.*

"". " I .."--.

...:. ".\ •

"-. N-i N-

line and VN- (x ,'113) by the dot-dash line.
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(1) VN-1 (x N-1'r N- =1 i) is optimal from x,-=- until

it crosses Vl(xNl~rN_1=I2), at

XN 6.7684932.

(2) V i(~ r~ =112) is then optimal until it

crosses V C ,r =113) at xN = 6.7684932.
VN-i XN-i N-i1-

(3) Then VNi(xN r 1i13) is optimal for all

larger xl

From (5.14)-(5.i6), we find the values of the costs at their

intersections is 38.84.

Collecting the above information we have that the optimal

expected cost-to-go from (ZN-VlN-I l) is I.

27475 if x <6 (1)
.74758XNil N-i- N-1

2 +12xN_+2.7499997 if 6 (i)<x N1<6 - (2)
1N-i N-i N-i1 -i -

V (x 1  1rl~)
N-i 2

.6363636 xi if N- (2)<x N1<6 N1(3)
N-1-N-- -

2 _2x +2. 7499997 if 6 (3)<x <6 (4)
XN-iN-1 N-i - N-i- N-i.-

2
.7647058 xif 6 (4)x

N-1N-1 N-i

(5.17)
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The optimal control laws are

-. 7647058 xN_ if x <6 (1)
N-1 N-i-- N-i

-x N- if 6N-1() <xNI <6 N- (2)

-.6363636 XN_ 1  if 6 (2)<x <6 (3)
XN-lN-i1 N-i- N-i

-xN-I+1 if 6 N-1 (3)<x N_ <6 N_ (4)

-.7647058 XN if 6 (4)<xN_

(5.18)

and the value of xN obtained by application of the optimal control

law is

.2352942 xN 1  if x N<6 N-Cl)

XN (xN , rN1=1) = if SN-i (i) <x i<N-1 (2)

.3636364 XN_ 1  if 6 N- (2)<x N_ <6 N-1 (3)

1 if 6 (3)<x <6 (4)
N-1 - N-1- N-i

.2352942 XNi if a (4 )<xN(.

(5.19)

where we denote the "joining -points" (where these quantities change) by

6N1 (1) = -6.77 = -N(4)

6N (2) = -2.75 -- 6N(3)
N-1 N-1
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The notation xN (xN-'l rNl) in (5.19) is used for the optimal 9 -

value of xN that is obtained in form rN1l as a function of XN_ 1.

This notation will be used in the remainder of the thesis. The

optimal expected costs-to-go, control laws and obtained xN values

are illustrated in figures 5.9, 5.10 and 5.11, respectively.

Figure 5.9 (VN (xNIrN=) has purposely not been drawn to scale

so that the behavior at the joining points can be clearly seen.

In light of the solution of this last-stage example problem

we make the following observations and claims:

1. From (5.17)-(5.18) we see that in this example

the optimal expected cost V (x ,r =1) is
N-1 N-1 N-

piecewise-quadratic in xN_1 and the optimal

control law is piecewise-linear. When we go back

another stage in time, the optimal cost

V (x ,r =1) can be obtained using a similar
N-2 N-2 N-2

approach. Things become more complicated, however.

Specifically, one step further back we will confronted with another

optimization problem to compute the optimal cost-to-go. Following

the same procedure, we can break the real line into regions in which

the function to be optimized is quadratic. In doing this we must

take into account into what xN-1 piece of VNl (x Nl,r N1=1) we are

driving the system as well as into what probability piece.

.1

140



t - 12 to

° 00

-F-

VN.I(xN.. ,I)

I I I I

II (4)

example-- 5.1 (t

I // /

N -481 / / /

\4 dy,-,, 1

FIGURE 5.9: The optimal expected'cost-to-go from (XNl,rN~l1) in .

example 5.1 (not drawn to scale).4

_'%I
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UN.I(XNJII)

tII

I I I

Hedge---a -- Hedge-
to to

XNu~ XN8J+1

I II
I I

I I - .T I

I I NI(3 IN14
1.75

I N-1(3) N-(4
2.75 6.75

-6.75 -2.75 I NIN(1I) aN z N .

N N-I

-1.75 I

II

I

_ FIGURE 5.10: Optimal control laws from (xNI ,rNl
= ) in example 5.1.
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" I XN(XN '1,1)

[-1N<SI I I I
I Hedge IHedg

t 60- to -- *

0-1+

I I ".5 ,88 I
X~z XN2.1

Regio ofior ~
avvoided

-X N valuesBN 1 (1)  BN-I(2)" 1N (3 ) 8N -_1(4)

.'--6.75 -2.75/ 2.75 6.7 5- XN-1

Region of"t
m _. avoided (

I I I

FIGURE 5.11: xN values obtained from (x ,r =1) using the optimal
N ~N-i' N-i=

controls, in example 5.1.
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It is intuitively obvious that the optimal expected cost-to-go

Vk(xkrk j ) will be piecewise-quadratic in x (and the controls

piecewise linear) at each time stage k. The bookkeeping details of

this will be taken care of in Section 5.4.

2. In figure 5.9 we see that at 6_(2) and N_(3),
N-1 N-1

the optimal expected cost has continuous slope. At 6_(2)N- 1
and 6 N_(3), the slope decreases discontinuously.

This illustrates a general property: at its "joining

points" {63(t): t=l,...,Mk(j)-l} the slope of the

optimal expected cost-to-go Vk (xk, rk=j) is either continuous

or it decreases discontinuously. (see Proposition 5.1).

3. In figure 5.10 we see that at6 N_1(1) and 6 N_(4),

the optimal controls are discontinuous in X-I"
However at 6 N_(2) and 6 N_(3), the controller is

continuous (and the optimal cost is differentiable).

In general, at each of its joining points

k(t) the optimal control law uk(xk rk=j) is

discontinuous if and only if the slope of

Vk(.,trk=J) decreases there, and uk(xk,rk=j) is

continuous but not differentiable if and only if
Vk(xk,rj) is differentiable there. (see Proposition

5.3 in Section 5.6).

4. Note that for xNl negative enough, the optimal

controller (in one time step) does not drive xN
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into a different probability piece. That is,
for x < (1), the optimal controller keeps

N-1 -

xN < -. Similarly for XN_1 large enough, the

optimal controller keeps xN in the same proba-

bility piece; for XN_ > N_(4), we get,
N-1 N-i1

XN> i.

In general Vk (xrk--j) and Uk(xk , rk=j) have

extreme regions of xk values (left endpieces

for xk <6 k (1) and right endpieces for
k

> (mk(j)-l)) from which the optimal con-

troller will never (through the terminal time N)

drive the system into a different piece of the

form transition probabilities p.i (for any form i

accessible form j). The properties of these end-

pieces will be addressed in detail in Chapter 6.

5. Let

Vk+l( +IrkJ) (rk+l) + S(rk+l)xk+l + P(rk+l)

SVk+l(xk+,rk+ k

denote the conditional expected cost-to-go from

(x+llrk+l) given that rki. This is a function of

For this example, the conditional expected cost

VN(xNIrNl1=1) is shown in figure 5.12, and is

given by
I13 2

V(xNIrN -=)- = 1 1 2 XN i IXNI >1

7if <l4

4 N- .." 1..°<
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VN(N:N1:1

3.25

I I

I I

2
1.75
VN( rN N

11

-3 -2 -1I 2 3 xN

FIGURE 5.12: VN(xNIrNI=I) for example 5.1.
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As we shall see in later sections of this

chapter the behavior of this conditional

expected cost function is intimately related

to qualitative properties of the optimal

controller and combinatoric properties of the

solution.

One relationship is apparent from example 5.1: active hedging to

a point from (xrk=j) occurs only to points xk+ where the con-

ditional expected cost Vk+l(x+llrkj) is discontinuous; these

points can only arise from form transition probability discontinuities.

This will be proved in section 5.6.

For x values between 6_(1) -6.7 7 and N_(2) -2.75,
N-1 N-1 N-I

the optimal strategy is to drive xN into (-1,1), where the conditional

expected cost-to-go VN (xNIrNl=l) is lower. Thus we have xN=-1+ here.

Similarly for XN_ 1 values between 6 N_(3) and 6 N_(4) we get x N=l

In these two regions of XN-1 values, the optimal controller actively

hedges to a point. That is, it uses control UN_1 to alter the

probability of failure p(l,2;x ) value. In this example the
N

system actively hedges only to points xN that are transition

probability discontinuities.

6. For 6Nl(2)< XNl < 
6Nx1 3 ), the optimal controller

doesn't have to actively hedge since the system is

driven into (-1,1) by (5.10) anyway.

14
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This is true in general for systems with purely quadratic costs

(i.e., S(i) = P(i) = H (i) G (i)0, all i e M). For such systems,
T T_

Vk(xkrk=j) and Uk(Xk~rk=j) have middle pieces containing xk0,

from which the optimal controller never (through terminal time N)

drives the system into a different piece of the form transition pro-

babilities pji (for any form i accessible from j). The existence and

properties of middle pieces will be addressed in chapter 6.

7. In figure 5.11 we can see that certain

values are never obtained by the optimal

controller. In particular, we have

xN  (-1.589,-i), xN (1, 1.589).

These regions of xN avoidance are state values that the system must

avoid if it is to be optimally controlled. Note that these regions

of xN avoidance correspond to X-i values where V (x ,r =1)
N-1 N-i N-i' N-i

is not differentiable (ie., N_(1) and N (2)).N-1 N-i

In general, there is a region of Xk+ 1 values that is avoided

from (xrk=j) corresponding to each nondifferentiable point of the

optimal expected cost Vk(xk,rk=j). This is shown in Proposition 5.3

(in section 5.6).

In the next section we will develop a procedure for the solution

of one stage of the general problem formulation of section 5.2,

and we will verify the first two of the seven claims above.
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5.4 One Stage of the General Problem

In this section we use intuition gained from the example problem

of the last section to solve the optimal control problem of section 5.2

for one time stage. As we indicated earlier, the notation and "book-

keeping" becomes quite complex, but the basic idea is the same as

illustrated in the previous section. Inductive application of the one

stage solution (backwards in time from finite terminal time N) then

establishes that the solution of problem (5.1)-(5.6) yields optimal

expected costs-to-go that are piecewise-quadratic in x and optimal

control laws that are piecewise-linear, for all forms j e M:

Vk(xk,rk=j) x ,Kk(t:j) + XkHk(t:j) + Gk(t:j) (5.20)

uk(xk,rk=j) = -(t:j)x + Fk(t:j) (5.21)

when

*k(t-1)< < k (t) (5.22)

where

{631) a(2) < ... <61(mk()

k k kk

are the points where the pieces of Vk(xkj) are joined together

(the boundaries of the xk -intervals) and

6 ik(0) 63(j (j)) A

k k k

The proof of the one-stage optimal controller result is cons-

tructive. It suggests an algorithm for the recursive determination

of the optimal expected costs-to-go and control laws for this problem.
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The one-stage solution result is as follows:

Proposition 5.1: (One stage solution)

Consider the problem of section 5.2. If at time k+l, for each

r k+l =j eM we have

i) Vk~~kl, j is piecewise-quadratic with
k~l~k~l'k+l~j

M k+ (j) pieces joined continuously at

k+1 k+l k+1 k-I-

(1.2.): 1 H k+l (t:l)/2

> >0
H.k+l (t:l) /2 G k+l (t:l) /

for t-l,.. .,m kI(j)

(i) ak+l xk+l is~lj continuous or decreases discon-
'xk+l

tinuously at the joining points (1,..,5 (n.j)1}
k+l k+1 mk+l

then for each r =je M
k

(1) Vk (xk~r kj) is piecewise-quadratic and u.k(xklr kj) is

piecewise-linear (as in (5.20)-(5.22)),each having

*~ m(j) pieces joined continuously at

0 k k k3(~(~)
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> -0

)> 0 t1l,2,...,Imk(j)

Sk(t:j)

(3) aVk (xkrk=j)
a is continuous or decreases discoh-

tinuously at te joining points (-10

At time k=N, conditions(i-iii) are clearly satisfied. Thus this

proposition can be applied inductively, backwards in time from k=N.

-. Equations for the iterative computation of the quantities mk(j),

K..(t:j), Hk(t:j), Gk(t:j) and (5 (j: =l,...,mk(J)-l} for each
Ick k k k

-4 i, j e M are listed in appendix C.l. These equations are developed

in the proof of Proposition 5.1, which constitutes the remainder of

this section (with some details in appendix c.1).

Proof of Proposition 5.1:

For each form rk j e M, the minimization in (5.5) subject to

(5.1)-(5.2) is converted into the comparison of a finite set of

constrained -in-x JLQ problems, each with x-independent forms.
* k+l

This is done conceptually via the following four steps:

Step 1: obtaining a Composite Partition of xk+1 values from the

partitions associated with the form transition proba-

bilities p(j,i;x) and the expected costs-to-go
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Vk+l (xk+ r k+l=i) for each i e Cj. Note that

the partitions are of x values for each dif-
k+l

ferent form at time k (not at k+l).

Step 2: Formulating a set of constrained (in x k+l) JLQ problems

having x-independent form transition probabilities and

quadratic costs; one problem for each region of Xk+l

values in the composite partition of Step 1.

Step 3: Solving the constrained subproblems that are formulated

in Step 2. These problem solutions represent the

optimal expected costs-to-go from (x ,r =j) if
k k

Xk+l is constrained to be in one of the specific

regions of values defined in Step 1.

Step 4: comparing the constrained costs. The optimal expected

cost-to-go Vk(xk rk=j) from any X value is the

minimum of the constrained expected costs-to-go that

are obtained in Step 3. This minimization involves the

comparison of piecewise-quadratic functions in xkI

We will describe each of these conceptual steps in sequence so as to

demonstrate the validity of Proposition 5.1. The actual solution

algorithm (as described in chapter 7) mixes these steps and uses the

combinatoric results of section 5.6 to solve the control problem ef-

ficiently (i.e., with fewer calculations.)
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Step 1: obtaining a Composite Partition of xk+ . For each form

j e M we construct a composite partition of the real line

(i.e. for xk+ 1 values) by superimposing the grids associated

with each p(j,i;x) and V k+l(xk+l ,r k+l=i), for all i e c.

The construction of these composite grids is first

illustrated for an example system below. The general

procedure is then specified.

Example 5.2:

Consider a system whose form structure is as shown in figure 5.13.

This system might represent the following situation:

rk = 1 normal operation

r k = 2 degraded operation (repairable failure)

krk = 3 nonrepairable failure

p(l,2:x) one-step probability of repairable

failure occurrence (x-dependent)

p(2,1) .ne-step probability of repair

p(1,3:x) one-step probability of nonrepairable

system failure occurrence.

The form transition probabilities from rk=l are piecewise constant in x

(but p(2,1), p( 2 , 2 ) and p(3,3) are x-independent).

-153
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(.89 .1 .01) if jxj < 1

(p(l,l;x) p(1,2 :x) p(i,3:x)) = (.7 .2 .1 )if l<jxj < 2

0 .2 .8 )if jIcj > 2

p(2,1) =p(2,2) =.5

Thus the numbers of pieces in each of the form transition probabilites

are

V11 = 12 =

= 3

21 22 23 31 32 33

The x-dependent transition probabilities are shown in figure 5.14.

Suppose that at time k+l, the number of pieces in each expected

cost-to-go Vk+l (x k+l' r k+lf'i) is

as illustrated in figure 5.15. Superimposing the appropriate par-

titions for each form r k=j e M, we obtain the composite partitions

of Xl values shown in figure 5.16. The number of pieces in each

partition, denoted by +l are

1p =9 2 =7 3 1.k+1 k+l k+l
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-;- " p( 11 -7777-

11 (3) = .89
. 2 " 7(L4)=. 7

X1 1 (1)=o , (s)=O

-2 -1 1 2 Xk+1
v(1) v1(2) v11(3) v1(4)

(a)

X (1)=.2(1,2:x)122(2) .I 12 3 ) '

122

-1 k+1
II

v 12CI) 7.'12 (2) X~

(b)

X 13(1)=. 8 p( 1, 3:x) Xk 13 ( s ) . 8 ..

" 13( 2)=.1*3l) '

k 13(2)=.1 X1 3 .( 3 )  01 1 I

-2 -1 1 2 Xk+ 1
' 13 (1) P1 3 (2) '1 (3) v,1 3 (4)

(C)

FIGURE 5.14: Piecewise-constant form transition probabilities from form

rk-l in example 5.2; (a) p(1,1:x) with 1-5 pieces,

(b) p(1,2:x) with 92=3 pieces, (c) p(1,3:x) with

713=5 pieces.
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V.

-4 -3 3 4 XK~

8' () 8 (2 8'(3)8 (4)
K+1 K+1 K+I K+I

VK1(K+I rK+I 2

28 K+ 1
87K+0') BK+I(?-) BK+1i 3 K+ i

(b)

VK+1 (xK+1, rK1 3

XK+I

(C)

FIGURE 5.15: Piecewise-quadratic 3xpected costs-to-go from r( l. k+3.)
in example 5.2;(a) Vk+l(xk+l r k+l1

1 ) has

mk(1)W5 pieces, (b) Vk+ (k,t,r 12) has m+ 2=

pieces, (c) Vk (x.k+1,rk1=3) has m13)lPiece.
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X9'k+1

III I I I

-4 -3 -2 -t 1 2 3 4 xA +,
7K+,(2) YK+, (3) Y'K+ (4) (5) Y (6) Y+7 Y+ 1 (8)

+K+I K K ++K+I KeI K+I K.

K +!

(a)

2 III I I
2'4 4) K.I (3) 4+1(4) 1 2+()-2+() K17

~K+I~'~K+-IIA6

-4 -3 -I 3 4 X K+ 1  r2+() 72 (2) 72y(3) 722(4) 72 (5) 21(6)

Y K*1 YK I YK I V+I15 K+1

(b)

3

3+I(

XK+1
(c)

FIGURE 5.16; Composite xk+l partitions for example .l; (a) for rk=l

1the partition has k+l=9 pieces, (b) for rk=2  the
2

partition has ik =7 pieces, (c) for r =3 the partition
k+1. k

has 3+=1 pieces.

158-- .- -, - 8 - .- .



The Xk+l intervals are denoted by

k+l k+l

with boundary values (grid points)

J (t-1) and y W (t)Yk+l Yi+l

CD

The general procedure for obtaining the composite partitions is

as follows:

For each rk= e M the real line can be divided into a finite

number of intervals of Xk+l values by superimposing the grids

k+l

ji (t): ji-11

for each i e C.,J

obtaining the composite partition

k+l k+l k+l ().. k+l k+l k+l k+l

of unique grid points. As in example 5.2, we define

k+i = the (finite) number of such nonempty
Xj+i intervals

where the tth such interval is

A]+l(t) Ax J (t-l)< <Ti (t)}
k = Xk+l: k+1~-) Xk+l < k+1

J+1
t--,..., k+i-
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Note that

... -l =klU :=l,.,ik'(")-

(5.23)

where JAI denotes the cardinality of a set A (the number of elements).

jjAn upper bound on j is given by
k+1

k+l < 1 + ji + m k+(i)-2] (5.24)

iec.

where the equality in (5.24) holds if

Ji JflJ2 i k t

v ji(M V jv (0) ji (Z) ) k+ ()

for all i, nec., Z=l'2'''''vJi-1 t=1,2,...,mk+l( ,)-l ando=l.....Djn-l.

Note that in example 5.2, the boundsof (5.23) are not tight because

of the overlapping values:

1 2 1 2
-3 (2) (1) 3 kl =( 3)(4)

k-I- k+l k+1 k+l

2 V (1) = (13) 2 = (4) v (4)

12 v 1)= 1) 2 1 1  v 1 3

2
-7 = 1 V (2)=v (1)=v (2)=2 (2) l=v (3)=V (2)=V (3)=6 (3)

11 12 13 k+1 11 12 13 k+1

(5.25)
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Step 2: Formulating the Constrained Subproblems

In Step 1 we obtained for each rkj e M a composite par-

tition of x+l values into k+l intervals. We can formulate

for each rk=j e M a set of constrained JLQ problems
k k+l

having xk+l -independent form transition probabilities

and quadratic (not piecewise-quadratic) expected costs---

one corresponding to each region of Xk+ 1 values. To see

this note that over 3ach such region A.+l(t),

V (x ,r =i) is quadratic and
k+l k+l k+l'

p(',i;xk+l) is constant in xk+ll for all i e c.. These

constrained problems are

V k Ixk r k=jlx k+l e A + 1 (t] V VkEx k' jitl

U2 R(j) + xk+l Q(r k+l;

= min
' s.t. + Sk+l xk+l r k+l (5.26)

k+1 k+l k+1 k+lrk+l

2
R(j)

min U +Ci) + xkSW

. p(ji S+l) i)

C5.27)
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=min
s.t. R( (x Irk j) (5.28)k J+k (t k+l ( k+1l k

k+. k+1A

subject to (5.1)-(5.3) for each t=l,2,...,J+l

Step 3: Solving the constrained subproblems

The third step in this constructive proof of Proposition

5.1 is to solve the constrained JLQ problems of (5.26).

As in example 5.1, for each r =j e M the solutions
k

of these constrained optimization problems
k+1

involve optimal expected costs-to-go that are piecewise-

quadratic in xk with three parts (except for t=l and

t = which have only two parts):

k4-1
t, L t

V L(xk ,J) if a(j)xk < Wk

3 ~t, U
Vk[Xkrk=JlXk+l e A +l(t) = Vk'(xkj) if OJ(t)< a(j)x.OJ(t)

vt'R (,j) if J(t)< a(j)x
Vk (Ik

(5.29)

with corresponding optimal control laws
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St,L(
j (xkli) if a(j)xk < 63(t)

W< a(j)xk< jk(t)
uk[xkrk=jlxk+le +l(t)j = Uk t,R ) if 8k

Uk (xk'j) if G()t)< a(j)x
k a (5.30)

The derivation of expressions for these control law and expected cost

pieces involves straightforward (but tedious) algebraic manipulations

that are described in Appendix C. 2. Formulae for the quantities in

(5.29)-(5.30) are listed for reference in Appendix C.l.

As in example 5.1, one piece of each expected cost-to-go in (5.29)

t,U t'Uand control law in (5.30), denoted by Vk  (xk'j) and ,k

corresponds to performing the minimization in (5.26) without the
xk+le + 1(t) constraint. The functions k'U J) and solve

VIC (xkj ilk (xkIj)

(5.26) only for those xk values for which the constraint \+ie j+l(t)

is inactive; that is, where application of the control that minimizes

(5.26) results in an xk+l value in the interior of q+ 1 (t). We define

*J(t) and (j (t ) so that these xk values (where VtU (xkj) applies) satisfy

@(t) < a (j) xk< jk W

For t-2,3,..,*k another piece of Vk(xkijt) in (5.26), denoted by

by vk'L(,j), corresponds to driving Xk+ 1 to the left boundary of con.-
j4 j + t,L .

straint region A (t) -That is, x+i = [ + (t-l)] + The functions Vt (xk )

(xkV kj)

t,L(
and uk xk,j ) solve (5.26) for those xk values where the constraint

xke +W(t) is active, and where u k (x,j) results in x+l<Y3+l(t-l).

,tL t,L
That is, Vk (xkj) anduk (xk,j) solve (5.26) for a(j)xk< 63(t).
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For t-1,2,.., jk+l -1 another piece of Vk(Xk,Jlt) in (5.26),

kl
denoted by Vj)R(xkj), corresponds to driving X+I to the right

boundary of constraint region .+lit)" That is, Xk+l = [YJk+l(t)]
The functions ,Rk and solve 526 r those

Vk (Yxk ) an u k li (52)xk

values where the constraint A+i(t) is active, and where Uk ,i)
r s t,R

results in jk+1  (t). That is, VkS(xk' j )  and uk  (xk , j)

solve (5.26) for

a(j)xk > (k

For t= +l there is no finite right boundary of A] (i ) (i.e.,
k+1 k+1- k+l

~pJ) 0), o tereis o v+l ,L

Yk+l(+l1 so there is no Vk (xkJ) piece; thus

ik( P k+l = in (5.29)-(5.30). We summarize the solution to (5.26)

in table 5.2.

For t=2,3,.., -+11  a typical three-part

vk(xk'rk=jil kle l t) looks like either (a),(b) or (c) of figure

5.17. Here the quadratic (in xk) function

tVL(,J) is denoted by the dotted line

Vk'U(xkJ) is denoted by the dashed line

t,Rt'R(x.ki) is denoted by the dot-dash line
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Pieces of valid for values the optimal solution of
of xksuch (5.26) results in

V(cKrkIKl =ka xCk+l such that

and

t,L X lfy) (t-l)] -

Vk (x.ksi)kl

a~j~k < j~t)on the left boundary

a(J) j~t of)

t=2 j

* ~ ~~ k~0 x~j &(t)< a(j)xk < k (Titl< T t

*k ttj &(t k+l t- <k+l< k+lA

k=1'..PI in the interior of

2 6j (t)k+l

()J(t <a j)xkx . ( t)]
tRk -~ )c+l

Uk (xk'j)
on the right boundary

t~l,...,1~ -lof

Table 5.2: Pieces of Vk(x.X~rk=j It) and uk~k 1 (~jt)
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k kqa

It R

IX k
(tW/a(j) @Ioa

k X,

'SO CXk J) I -

I I

*1(t/G~, VR(fl/aj) Xk

k/
(C),

FIGUR 5.1: Tyicaloptial epectd Vot (XxJ) (t)
'kkk'~' 4+

where ~j)>b
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The solid line in each figure indicates which of these three cost

functions applies over various x values.

The three different possible shapes of Vk(x , jilt) shown in

figure 5.17 arise from the relative values of the minimal points

vt,L t,U t,RAof an -0) v3 (,) dk J. J(t) /a(j)

the values and slopes of VtL( and are the same.

j t,R( j) and

At C - (t)/a(j), the values and slopes of Vk , a

tU
Vk (xkj) are the same. At all other values, the constrained costs

J
are greater than the unconstrained costs. That is, for t=2,...' l

tt,L kU

k 6 )/e()

ek k

Vt = Jt(5.321= a(j) X = a(j) (5.31)

t,L tU
aVc(xkij) (xV (x

3x j(t) =k 
0 (t) (.2

xk~ a a(J) Xl a (j)

and for t=l,... ,iJ-l-l: 7+l
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Vi (xDJ G(t) =V~Ik~ 03 (t) (.3

-k a(j) '= a(j)

* avt; avkDU(xk'j)

k j (t) V Xk ) (t)
xk a(j) k = a(j) (5.34)

As is evident in figure 5.17, since V '(xk,j) and Vk'Lxk,J) have

the same curvature it follows that:

Vt,L( t,R
";'"k X j )  VkL~x' )i a~~xk > G(t)(5.36)

tL(xkJ) <  tR(xj) 'f a (j) Xk < OkJ(t) (.6

Step 4: Comparing the Constrained Costs.

The fourth step in this proof of Proposition 5.1 is to

compare the solutions of the Vk+l constrained JLQ problems
kl

specified by (5.26). For each rk  jGM, Vk(Xkrk(j)

at each xk value is the smallest of the constrained

costs in (5.29). That is,

Vk(xk,rk-j) = rin j Vc xkr=jl x+le Ak+1
t', •• k+11

(5.37)
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This minimization involves the comparison of piecewise-quadratic

functions in

In principle we can use (5.37) to find V (x r =j) and

uk(xkrk=j) (that is, the quantities K (t:j), H k(t:j), G k(t:j),

L.(t:j), Fk(t:j), {6J(t): tl,...,k(j)-l} and k(j) as in (5.20)-

(5.22)). This minimization was done graphically for example 5.1.

In general, we must accomplish the minimization of (5.37) by finding

the intersections of the (31pik-2) quadratic functions

k4-

L 2(1 R L ) +l,Vkll( j)kklI l lxkjVkl(Xk
j)  (xkj),v k k (xk, J)

(5.38)

and choosing Vk[ xrk=j] at each value of xk to be the one having the

lowest value there (for those costs that are valid at x). Thus

Vk[lxrk=j] is piecewise-quadratic in xk and uk(x,rk=j) is piecewise-

linear, as claimed in (1) of Proposition 5.1. The verification of (2)

in the proposition is straightforward.

The fact that

'vk (x, rk=J )a:-. k) is continuous or decreases discontinuously

at the joining points {6 (11.. (mk(j)-l)} follows directly from the

comparison in (5.37): a particular joining point ( can arise

in two ways:
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(1) two (or more) of the constrained costs-to-go in

(5.37) may cross at 6J(9). Since Vk(xk,rk=j)

is the smallest candidate cost at each xk value,
the slope of Vk(xkIrk j) must decrease discontinu-

ously at such a (2). This is illustrated infigure5.18.

(2) 3(2 may be an xk value where the optimalcandidate

cost in (5.37) changes from a constrained piece to

an unconstrained piece (or vice versa). That is,

( Z) corresponds to either

X 6J(t)/a(j) where v( jlt) changes

from.'L(k) to k Xk j) and @Vk(xk,j t)/axk is continuous or
ik t,Uxk

eG(t)/a(j) where Vk(xk,Jlt) changes from V1c j)

VR(k,j) and aVk(xk,jlt)/axk is continuous.

This concludes the proof of the one-stage solution given by

Proposition 5.1. Certain qualitative properties of the optimal

controller that are developed later in this chapter and in chapters 6,7

will be used to simplify the procedure that is described above. The

actual solution algorithm is presented in chapter 7. In the next sec-

tion we will demonstrate the application of steps 1-4 in the next stage

(k=N-2) of example 5.1.
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5.5 The Next Stage of Example 5.1

In this section we demonstrate the application of the four steps

detailed in section 5.4, by solving the next stage of example 5.1.

From this example we can gain further intuition about the qualitative

and combinatoric properties of the optimal controller which will be

exploited in section 5.6 and chapters 6 and 7.

First we note that the last stage solution of example 5.1 that was

carried out in section 5.3, in terms of the notation of section 5.4,

involved the partitioning of the real line (of xN values) into

-. WN=3 regions

A (1) - (Y (0),yN(1)) = -,-i)*N N N

A N(2) (yN (1),yN (2)) = (-1, 1)

AN(3) A(yN(2,y (1, )

and

%_i(1) =0 - =-N_(2)
N-1 N-i

e l(1) = -4.25 = -el(3)
N-i N-1

8 (2) =-2.75 = -e (3)
N-i N-1

1The superscript "I" in 1 N (t), y (t), N_(t), GN-1(t), 6N-1 W, etc.

is suppressed in this section since we only consider r=l.
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From (5.17)-(5.18), the solution at stage k=N-i is

2VN-1 (XN-1 IrN_ l=l).: XN-iK N_(t:l) + xN1 H N-(t:l) + G N-(t:l)

UN-1(-"N-=1) -'-1 (t:llXN-1 + FN-i (t:l)

for 6N-i (t-l)< N < 1 (t)N-1 N-1 N-1 < -1

where

m (1) =5

N-i N-"a N-1I(0) = - N- I(3) = 2. 75

N- (1) = -6.77 5N_ (4) = 6.77

5NI(2) = -2.75 '5_(5) =

N-1 ~N-i 5) 0

and

"N1(1:1) = .7647 -- K (5:1)

K (2:1) =1 --
N-i

iN-1(3:1) .6364

H (2:1) 2 =-H (4:1)

N-1 N-I

H_(1:1) H (3:1) = H (5:1) = 0N-iN-i N-i

G (2:1) - 2.7 5 = G (4:1)N-i 'N-i

GNi (1:1) = G N_(3:1) G N_1(5:1) = 0
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'Il (1:1) = .7647 = ~i(5: 1)

L (2: 1) =1 =L (4:1)
N-i N- i

LN_(3:1) =.6364

F (2:1) =-1 =-F (4:1)
N-i N-1

F N1(1:1) =FN_(3:1) =F N1(5:1) =0

as shown in figures 5.9, 5.10.

Now we proceed to the next stage, following the four solution steps

of solution 5.4.

Step 1:

Given {6 N (1MISN- (2), 6 N1(3), 6 N1(4)1 from section 5.2 and-

the form transition probability discontinuities

v (1)=-12

V 12(2) +1

we can obtain the composite partition of x~l From CC.1.1)-(C.i.3)

and (C. 1.6) we can compute the conditional expected cost-to-go

Vi(x,-llrN2  as well. We find that (xi has

N-=7pieces with boundaies
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YN-1 = SN-l(1) = -6.77

N = 5N-l(2) = -2.75

YN-1( 3 ) = V 1 2 (1) = -i

(4)= v12 (2) = 1

YN-i(5) = N-1(3) = 2.75

TN- (6) = 5-(4) = 6.77

N-1 N-1

and that

V_1(xN- lrN-2=1) x N -1 + + GN-1 (t)N--11 -2N-i NIN 1 () G_

if XN_i e AN- 1 (t)

for til, .. ,.N-1 (7)

with

_( (1) - K- (7) = 3.591

Ki( 2 ) = K_ 1 (6) = 3.65

H (2) - .5
N-i

H_(6) =-.5
N-i

G (2) GNi ( 6 ) .687 5
N-1i-

-(3 K i(5) = 3.559

K-(4) - 2.277

N- (xN-llrN- 2=1) is shown in figure 5.19.
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VN- I 1 r -

I t'64.5 1 I

I 26-921

I I 2.277

-6..1 -2.75 -1 1 2.75 6.77 XN-.1

FIGURE 5.19: V~(x~lr 2 1 for example 5.1. (Not drawn to scale).

4NlNl'N21
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Step 2: The 4%N_=7 constrained JLQ problems, as in (5.28) are

thus

VN- 2 (x N-2',rN-20111) = mrin 2 +(.916)2

. ~uN2s't, uN 2 + 3s1 5xN-l

.7i
xN-l "-1 (1 )

=i2)2 2

-~ ~ V_(xN_2r =2-- ) m rin u 2  + (3.655999

N-2 N-2 N 2.2. N-2 XN-

e!
xN1 AN12 + I xNil + .6875

- '2

vN-2 (xN-2 'rN-2 =1 3 ) i + (3.5590909)x 2

.N-i uN-2 (3

*VN_2 XN-2,rN_2 iI4) =UN2''i U-2 + 2.2772727N-2

'N- 2s

N-1 N

XN _16 A N 1 (4)

(X rN 2 =I5) = min u + (3.5590909)XN- 1

uN-( 277 N-2

1.77



V. 0 Oo .. -

VN-2"N-2"N-2 u S.t N2X-uN-2s'
VN2 lNAr2 l(6) XN1 + .6874999

VN-2 (XN-2rN-2s'1) min 2 + (3.5911765) 1

UN t. N-i
XN-le Ns- 1

SteP 3: SQlving these constrained problems (using the formulae of

appendix C.1) we find that

"- _1,U .78219 x2 if x < -30.975976
VN2N-2 N-2-

v--2 "V-2+ 13.537586 x if x_ 2 >-30.975976

V2 2 + 13.537586 XN_ if X -31.223493

(- L + 210.33327
VN-2 XN-2'12 22,U .7849462 1  i

VN-(XN2'l2) v2,N_2 [  .84962 -2 ] if -31. 223493<_SxN_2.-12.53749-

+.1075268 x~

L +. 674059 J

% N-2 5.4999994 x if -12.537499 < XN 2

L+ 34. 478117
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v-2 3, 2 + 5.4999994xN-2 if xN- -12.537499

v_(x ,113) + 34.478117

3,U if -12.537499< xN  4.5590909N_ .780658 -2 if 4.500
N-2 XN-2

N-2 !4.5 if > -4.5590909

4,L 2
V 4 2  [ _-+3.2772727 if x_2 -3.2772727

V N-2 N- if x :
VN_(x ,114)
N-2 N4-2"

4,U = 6948682x2  if -3.2772727< xN  < 3.2772727
%-2 " N-2 -

4,R x2  2x if x 3.2772727VN-2 =-2 N-2 XN-2 -

[] 3.2772727

5,IL j2 ifx -*

%' x N- 2 1-2 + 4.5590909] if 4.5590909
15,13 2
V, 2 = .780658 x 2  if 4.5590909< x < 12.537499

142= 7068X-2 -N-2-

VN 2 (x N2  115) 5,R it i x 2 12.537499
VN-2 = _T5.4999994XN_ if XN_ 2

£ L+ 34.478117

V6,L xi 1 < 12.5374999
N-2 2 6-2 -5.4999994 XN- 2  if XN 2  _

L+ 34.478117

VN-2 N-2' V6 = 7849462 x if 12.537499<x <31.223493

.1075268 XN-21

-+.674059

v6,R 2 13.537586x if x 2> 31.223493%-2 XN-2 N-253786-

4-2 L210.33327 J
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7 -2 13.537586x if x < 30.975476

1- 2 -2N-2

That is: ,1 17) + 210 .33327 ]
7,v 8290 2 if x 30.975976

e (2) =-31.22 - e (6)
N-2 "N-2

E) (1) =-30.98 =-6 7
N-2 N-2(7

(N- (2) = N- (3) =-12.54 -2 (5) N-2 (6)

e (3) =-4.559 =-6 (5)
N-2 N-2

e (4) =-3.277 (4
N-2 2-

Step 4:

Now we are ready to compare the constrained problem costs,

so as to solve

VN-2 (xN-2' r N2l1) m nin { VN-2(xN-2 'lit)~ (5.39)

Ni

as in (5.37).

In figure 5.20 the values {6N- (t+l), G)N- (t): tuil,...,6} are

plotted (on the N2 axis) and the regions of XN2values where each

candidate cost applies are indicated. For example, when xN2 is

in the interval (3)~,6 (4)), the eligible candidates are
N-3 N-2

1,R 2,R 3,R 4,L 5,L 6,L 7,L}
{V ,V ,V ,V ,V IV IV };note that all of the eligible

costs over this interval correspond to active hedging to some point.
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*V2L LV?.U v I
=_V3.Lf V3,u - v3,R I -

II I

.I 1.4 i v.U v5, 4...5.R I 3

V6 L v0, j-. I

0 I 8NL2(4) I "2)
" I I I v , VIu --. --I-v R.-I

S I I I I
I I I ;v..I I vU

" i I I I
I I III I

I I I 4I I I I
-31.22 -350.98 -125;4 -4.5%6 -3.277 0 3.277 4.56 12.54 30.98 3t.22 XN.2
9N.2( 2 ) 9N-2( 3 ) 8N.2(4 ) 8N-2( 5 ) 9 N-;2( 6 ) 9N-2( 7'

ON-2(t) ON-2(0 @N-2(3) ON-2(4) ON-2(5) ON-2(6)

Figure 5.20: Eligible Regions of XN 2 values for candidate

costs-to-go in example 5.1.
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A "brute force" approach to solving (5.39) would be to compute

all 19 functions of xN_2 shown in figure 5.20, and then to compare

those that are eligible over each of the indicated XN_2 intervals

so as to determine which is optimal.

Fortunately we can avoid many of these calculations and computations

from a consideration of the shape of the conditional expected cost-to-

go VNl(N_lIrN-2=1) in figure 5.19, and by using facts (5.31)-(5.36)

that were developed in the proof of Proposition 5.1.

Consider VR(x -l) and V x2,L ( 1) as functions of x
N-2 N-2 N-2 N-2 N-2'

Each corresponds to driving "-i to the value y (1) = -6.750
N-1 N-i

(from the right or from the left). But the conditional expected
A

cost-to-go V (xN_llr_=I) is continuous at y (1) (and equals
N-1N- N-2 N- I

164.5, as shown in figure 5.19). Thus VR(x ,l) equals
N-2 N-2

V 2,Lx ) as a function of x The same is true for each pair of
N-2 N-2 N-2*

fucton tR t4-l,L
functions V-_2, VN_2  that correspond to driving XN_ 1 to a point

Y N-1(t+l) where VN-1 (xNIl) is continuous. That is,

1,Ro 2,L.
_ N2N-21) Z V N2  N2 ,1) (driving xN_i to YN_1(1))

2x2 V_2(XN 2,,1) (driving XN to)
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5, R 6, L
V ( , v6'('x ,i) (driving XN1 to (5))

VN-2 (XN-2 ' ) - N-2 ( N-2

6,R 7,L "n
v (xN_ 2 l) VN_ 2 (xN_2 ,1) Cdriving XN 1 to YN1(6))

At a point XN_=T where VN1(XNIi) is discontinuous, the

cost-to-go that corresponds to driving to the side of xN -.y where

V (x 1) is less is obviously lower than the cost of driving to
VN-i N-i1

the more expensive side of xN- =y. Thus as functions of xN2'

V4, L (xN, 1) < 3,R.( )

-2L V'2C N-2'I) (best side is to yN (3) -
N-2 N-2 '  N-2 N-2 N-

4,R5,
VN-(xN-,l) < 5,Lx-2l (best side is to Y N-1 (4)

Using the above relationshipv and (5.31)-(5.36) we can eliminate

v,R V 3 V 5 6 6 '7} from consideration byV 2 -'N-2' N-2' V;2' VN-2' VN-2' -N-2' rmcnieainb

the following steps (each of which is indicated on figure 5.21):

1. As functions of XN_2 ,

1,R 2,L.2,U (equality atVN_2(XN-2,) VN2(XN_2,1)> VN_2(XN_2,)

X =e (2)). Thus
N- 2 N-2

1,R
VN_2  cannot be optimal for XN2  (6 N_2 (1),eN 2 ( 2 )).
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2. vNR cannot be optimal for x > G (2) because
N-2 N-2 N-2

1,R 2,L2,v (X ,i) V (x il)> V2 'R(x ,)
N-2 N-2 N-2 N-2 N-2 N-2

2,L
3- V cannot be optimal for §2 < 6_(2) because

v 2,L _ 1 ,R v,UN-2 VN-2 >  N-2

2,R
4. VN- 2  cannot be optimal for x,_ '2 ( N-2(3),G N2(3))

2,R 3,L 3,U
because VN2 -N-2 > VN2"

2,R
5. VN 2  cannot be optimal for x > 0_ (3) because

V2,R _3,L 3 ,R (3).
" N-2 VN-2 >  N2for N-2 N-2

" 3,L
6. V3, cannot be optimal over X < 6 (2) because

N- 2 beotmloe N-2 "C6N-2

3,L 2,R 2,LVN_ - > o <6 (2).
N-2 N-2 VN-2 for XN-2 N-2

3,L
7. VN_ 2  cannot be optimal for xN- 2 e( N-2(2),E N2(2))

3,L 2,R 2,u
N-2 N-2 VN-2

3,R

8. V3, cannot be optimal for N_2 6(02(3),e (4))
N- N2 N-2 N-2

3,R 4,L
because VI V~

VN-2 VN-2
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9 N2 cannot be optimal for XN 2 (8 N(4),N(4))

3,R 4,L 4,U
becauseV >V V

VN-2 VN-2 VN-2

10. 3,R cannot be optimal for xN 2  4N2 )
VN-2 X- -

becuse3,R 4,L 4,L 4R> ()because VN 2 >V¢ andyv" > 4i2 for XN_> 9N_ (4).
N-' %2 an N-2 iq-2 fo N-2 N-2

11. V5 L cannot be optimal for x < N (4) because
N-2 N-2 N-2

5,L> 42 and 4,R > 4 L for X K e2(4)

beaue " > V 4"V2R > VU -.

- -2N2 - N-2 N-2

5,L
12. V cannot be optimal for x e(e (4),N_ (4))

VN- 2 N-2 N-2 N-2

bece5L > 4,R 4,U
cause N-2 VN-2 N2

5,L
13. cannot be optimal for e( (4),0_(5))

VN2 xN-2eN-2 N-2

v,R 5,L 4,R
N-2 VN-2

5,R ee ()9 ()
14. V '  cannot be optimal for XN 2  (N (6),becN-2u

N- 2
because ~ 1  .~ 1  ~i

% 12 VN-2 > N-2

5Rcannot be optimal for x > (6) because15. v > v R forx >- 2 XN-2 >N-2

5,R 6,L > 6, foE) ( .
-2 %2 N-2 N-2 > N-2
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6, L
16. VN-2 cannot be optimal for xN-2 < aN-2(5) because

6,L 5,R 5,L
VN2EvR~v~L for x <0 (5).

VN_2  VN-2 VN-2 N-2 N-2

17 6, L
17. V cannot be optimal for xN_ 2 e(e (5),EN (5))

N-2N-2 N-2 N-2

6,L 5,R 5,U
because VN2 N-2 N-2

6, R (6 beas
18. V cannot be optimal for x > (6) because

VN-2 cnobeN-2 N-2

6,R 7,L 7,U

N-2 'N-2 N-2

7,L
19. V cannot be optimal for x < 0 (6) because

VN-2 W-2 N-2

7,L 6,R 6,L < N ( 6 )
VN 2  N- >2 NN2 N-2

20 7, L
20. V cannot be optimal for x eN_ (6),0 (7))

N- 2 N-2 N-2 N-2

7,L 6,R > V6,U
VN-2 VN-2 N-2

4,L

SThus the only constrained costs left in consideration are VN_ 2  and

VN-2 .  For this problem, active hedging toapoint cnoccur only to

XN- 1  12

or

XN- = YN-1 (4 - = v1 2 (2) = 1
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We see from figure 5.21 that

V4,U A• V is optimal for N_(4)< _ < N_2(4)

4,L
VN 2  is optimal for G (3)<x < (4)

N-2N-2 -N-2 -N-2

• 4,R

* N-2 is optimal for N-2 (4)<- -N-2 < eN-2 (5)

To complete the minimization of (5.39), we first solve for the
4'L (X_,l 3'U"

intersections of VN 2 (x ) and V 3 x l). We find that
N-2 N-2 N-2 N-2'

they intersect at

XN- -6.977, -2.1414

and that for x < -6.977 V4 ,L >N-2 . Thus
XN-2 < N-2 VN-2

3,U
VN-2 is optimal for

e2(3)< XN_2 < -6.977

N- 2
4,L2 Is optimal for

-6.977 < -  ON-2 (4).

In addition,

V,_L doesn't interesect 2,U
VN-2 VN-2

in (8 (2),G (2))
N-2 N-2

- . . . . . 188



and
4,L
VN doesn't intersect

VN-2 'N-2

in (-110, W()
N-N2

Thus to complete the determination of V-(x-'rN2=I) for
N-2 (N-2 -2=1

2,U l,U
XN 2 < 0, we need only to find the intersections of V,2 and VN-2

These occur at

XN_ 2 = -31.18, -7.846

and for x < -31.18 U < V2U
N- 2 IVN- 2  N-

Thus from figure 5.21 we see that

1, U
-' V is optimal for.. VN-2

XN_ 2 < -31.18

2 ,  is optimal for

-31.18 < x < -12.54 - e_(3).
-N-2 - N-2

From the symmetry of this problem we need only consider xN 2 < 0

or xN-2 > 0 (this is easily verified from the VN_2(x-2,lt) computed

above). Collecting all of the above information we thus have

the following:
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The optimal expected cost-to-go VN-2 (xN-2' Ir N-2 l) and control

law u -(x- ,r N-1-) have

in () 9
N- 2

pieces, with joining points

6 N2(1) = -31.18

6 (2) = -12.54
N-2

6 (3) =-6.977
N- 2

6 (4) =-3.277
N- 2

6 (5) = 3.277
N- 2

6 (6) = 6.977
N- 2

6 (7) = 12.5-4
N-2

6 (8) =31.18 (5.40)
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K
v if x (i)
N-2 N-2 - N-2

2 ,U
3 ,u if (2)< < (3)

N-2 
XN-2 - N-2

i4 ,L  f (3)<x < (4)
-2 N-2 xN-2 - N-2

V4 ,u  if 6 (4)< x 5N--2 2-2 -- 2 -2 'N-2'()

4,R if _ (5)<x < (6)

VN-2N-2 
- N-2 - N-2

5,U  if (7)

VN2  if 6 (6)<x < (7
%-2 N-2 - N-2 - N-2

6, U
N-2 if N-2 (7)-< XN-2 - N-2(8)

7,U N2 if 6N- (8)< xN_
%' 5N-2 ( <N-2  (5.41)

That is,

KN2(1:1) = .7821909 = K2(9:1)
N-2 'N-2

K_2(2:1) = .7849462 = KN2 (8:1)

- : = .780658 =

K_2 (4 :1) = 1 = K_ (6:1)

N- 2N- 2

KN_2 (5:1) = .6948682
(5.42)

H (2:1) = .1075268 =-H (8:1)

N-2 N-2

H (4:1) = 2 =-H (6:1)
N-2 N

H (1:1) = H (3:1) = H (5:1) H (7:1) H (9:1) = 0
N-2 NI-2 N-2 N-2 N-2
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GN-2 (2:1) = .674059 GN-2 (8:1)

G (4:1) = 3.2772727 - G (6:1)
N4-2 N4-2

G N2(1:1) - GN2 (3:1) = G N2(5:1) = G N2(7:1) = G N2(9:1) = 0

L (1:1) = .7821909 L (9:1)

N4-2 N4-2
L_ (2:1) = .7849462 L (8:1)

N4-2 1-2

LN2 (3:1) = .780658 = L N2(7:1)

LN_2 (4:1) = 1 = L (6:1)

LN (5:1) = .6948682

F (2:I) = -.0537634 =-F (8:1)
N4-2 N4-2

F (4:1) = -1 =-F (6:1)
N4-2 N4-2

F (1:1) - F (3:i) - F (5:1) = F (7:1) F (9:1) = 0
N4-2 N4-2 N4-2 N4-2 N4-2

The value of the xN1q obt aed by application of the optimal

control laws is given by

.2178091 if XN -  1N-2(1)

.2150538X -.0537634 if N_(1)<x N2< N2 (2)
'N-2 N-2 - -2N2

.219342 xN 2  if 6N 2 (2)<XN- < 6N- (3)

XN-l (x N-2'rN 2 1) -1 - if 6 (3)<x < 6 (4)
14-i14-24- N-2 - N-2- N4-2

.305138 'N-2 if 6 N2(4)<x N< 6 N-2(5)

+ - if SN2 (5)<XN_2 < 6 N-2(6)
.219342 x if 6 (6)<x < 6 (7)

N-2 -2 N 1-2- N-2

.2150538x + .0537634 if - (7) < 6 (8)
IN- 2 N4-2 - N-2--S 14-2

.2178091 xN_ 2  if SN-2 (8)< xN 2

(5.43)
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The optimal expected cost-to-go, control law and obtained xN_1

values are shown in figures 5.22, 5.23 and 5.24, respectively.

From the solution of this stage of the example problem we can

make the following observations:

1. As in the last stage solution, the optimal control

law is discontinuous at (and only at) XN-2 values

where V (xN2 ,r =1) decreases discontinuously; that
NN-2 N-2

is t (1)' 6N-23' 6N-2(5' 6N-2(8).

2. At time k=N-2 (as at time k=N-1), active hedging

occurs only to discontinuous points of the form

transition probabilities:

12 ()= - 12 (2) =1

3. We see that for this example system:

mN (1) 1

MN-
m (l) =5

That is, as (N-k) increases the number of pieces

is increasing linearly, by

2 (number of probability pieces, V =2) =4
12

at each time.
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- o ... . . . ° .-. •. . - _ . . . . . .. .. . .__ ___ __

I I I f I

Vu IV, IV3, L 4 UV II ,,6,,7,u~~N-2 -N-2 N- N-21S72V N- 'W2N-2 'N-2

II 'I I I
,i I Ill

l I I IIIII I II

S I 76 I
I II I.76o /1

-31.1-12.54-6.98-3.28 3.28 6.9812.54 31.18 XN_
B-N-2(') N-2-0 ) 8 - =(5) 8 -2(7)

S8.a20 SN.2z(4) 8 .Z=(Sw 8 -.zwl

Hedging Hedging
to XN..I=.1 to XN.I zi-

FIGURE 5.22: Optimal expected cost-to-go from (xN2rN2 =l)

in example 5.1. (not drawn to scale).
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UN..2(XN-2,1)

I 24.4161 -24.388

1,u 2,U u3 U 4 ,L U 4,U .4R ~5I 6,U 7, UUN-2 UN-2 *2N * N-2 UN~ N2 UN-2 j N-2
optimal optimal , optimal optimal

-. 9.79
6.92

-3.8-12.s1-6.98-3.35 33 &91.4 31.18

6.92

SN2(I BN_4-2N(?5)

___ 2 4.415

Hedging toHedging to
XN-12 XN11

*FIGURE 5.23: Optimal control law from (x N-'r N-=-1) in example 5.1.

(not drawn to scale).
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IXN-.1(XN-... rN-. 2 :1

6.791 }Region of

.6.79 avoided
-- 6-759 XN-I values

2.75

1.53 Region of

}avoided
Ix values

-31.18 -2.54 -6.98 -3.3 3359 12.54 31.18

Region ofr
avoided 1

X N- values ' 15

Hedge
to -2.75

XNJ = Hedge
to

} Region of -6.759
avoided -6.791
xNIvalues

FIGURE 5.24: x1 N1 values obtained using the optimal control from

(x ,r =1) in example 5.1. (not drawn to scale).
N-2' N-2'
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4. There are four regions of x-i avoidance:

XN_ 1  (-6. 759,-6.791) XNl (1, 1.53)

xN_1 * (-1.53, -1) xN_ 1  (+6.759, 6.791)

As the previous stage. these regions of avoidance correspond

to xN-2 values where VN_2(xN_2,rN_2=l) is not differentiable.

That is, to

(N-2 (1), N-2 (3), N-2 (5), N-2 (7)1

Note that there is no hedging-to-a-point (from time N-2)

associated with (1) and (7).
N-2 N-2

5. In the determination of VN2 (x N2,r N_=1) above, we

did not have to compute and compare many of the qgadratic

functions listed in (5.38).

The five phenomena listed above are examined for the general problem

in the next section, and are characterized by Propositions 5.2, 5.3

and Corollary 5.4. From consideration of both stages of this example,

we can make the following additional observations and claims that

are addressed in the next chapters:
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6. The boundaries of the left and right endpieces are

much further from zero at time N-2 than at time N-1:

N-2 (1) = -6.75 = - N(4)

6 N-2 (1) = -31.2 = N-2 (8)

This is an example of a general property: except for

pathological problems, the range of X values for

which the optimal controller involves changing the pro-

bability piece that the state will be in (at some time

{k+l, k+2,... .N-l,N}) monotonely increases as (N-k)

increases. That is, the endpieces move "further out"

from zero as (N-k) increases.

7. The size of the middle piece, where active hedging

serves no useful purpose, also grows between k=N-1

and k=N-2, but more slowly than the distance to the

end pieces:

* at time k=N-1, the middle piece is

(6_(2),6 (3) = (-2.75, 2.75)
N-I N-1

a at time k=N-2, the middle piece is

( 2 (4),dN_2(5) - (-3.3, 3.3)

This suggests a general property: as (N-k) increases,

the sizes of the middle pieces converge monotonely

(increasing or decreasing) to steady-state values.

19§
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8. Note that the curves

l,U 7,U 3,U V 5,U
N 2 =V ' and V,'2
-2 V2N-2 N-2

are very close together (see (5.41)); in fact, they

are so close that figure 5.22 could not be drawn to

scale and still show the behavior of V_(x ,r =1)
VN-2 N-2' N-2

at its joining points. This suggests that even

though the number of pieces mk(j) of Vk(rk=j)

increases as (N-k) increases, many of them may be

"almost the same." This phenomena is the basis of a

"finite look-ahead" approximation to the optimal steady-

state (infinite time horizon) solution of the general

o problem, which is developed in chapter 7.

Setting aside for now the steady-state phenomena (6)-

(8) above, we proceed to clarify the combinatoric pro-

perties (l)-(5), in the following section.

5.6 Some Combinatoric and Qualitative Issues

In this section we examine several combinatoric and qualitative

issues related to the (off-line) determination of the optimal control

laws and costs of Proposition 5.1. Aspects of the problem that are

addressed here include:
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the nature of active hedging; examining what

values of x an optimal controller will hedge

to and why, and what values of x will be avoided

and why,

determining how many of the candidate costs

(and control laws) in (5.38) must actually

be computed and compared,

characterizing the number of pieces, m(j)

of the optimal expected cost V (x r =j)

and control law uk x ,rk=j).

The topics studied here are useful in the specification of an

efficient way to carry out the algorithm steps that are indicated

in the proof of Proposition 5.1.

A "brute force" way of determining Vk(xkrk=j) in (5.37) is

to compute and compare all of the

(5.44)

candidate quadratic cost functions listed in (5.38) (the right hand side

of (5.44) follows from (5.23)). Thus

iAs done in example 5.2.
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3*3 2< -2 545k+l <14-3 + i 1 i-j(.5

where equality in (5.45) corresponds to the "worst case"

= M all forms are accessible to each

other in one step

and all the V *9Ji) M l,..., -j

J (t) t=l,. .. ,ik+ (i)- i=l,... ,M
k+l "' '

values are different.

This suggests that the number of pieces, mk (j), of each

Vk[xk,rk=j] might be growing geometrically (with powers of 3) as

N-k increases. Fortunately, this is not the case, as suggested in

the previous section. The underlying reason that many of the

candidate costs in (5.38) can be discarded is the nonincreasing-slope

condition (3) of Proposition 5.1. In particular, the optimal controller

only actively hedges to x values that are discontinuous points of form

transition probabilities (ie, to V's). There is no active hedging

to joining points of the (next-stage forward) expected costs (ie, to

6's) precisely because the slope of these costs is nonincreasing at

such points.

These facts will be established as we pursue the following:

(1) first we show that many of the candidate costs

in (5.38) cannot be optimal (for any xk value)

and hence they need not be computed (Proposition 5.2),
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(2) Next we show that each candidate cost in

(5.38) can be optimal over, at most, a

single interval of X values. This bounds

the number of pieces mk(j) of Vk(xrrk=j).

(Proposition 5.3 and Corollary 5.4).

The following proposition relates values of x that are hedged
k+l

to with discontinuities of the expected cost-to-go Vk+l(x+llrk=J

and it eliminates many of the candidate costs in (5.38) from

consideration.

Proposition 5.2

The optimal control law uk(xk,rk=j) can only hedge to points

that are discontinuities of the conditional expected cost-to-go

Vk+l (Xk+l;rk=j). That is

hedging x is a discontinuous point

to some ) of form transition probability

ponly (x fr(m OPi,i;x) J/(xk,r=J) / for some i 6 C.

Only

+1 fC . (z 5.6

of the candidate costs listed in (5.38) must actually be computed

and compared in (5.37) so as to determine Vk(xkrk=j).
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These costs are:

(i) for each region A+i (t), t=l,'..Ikl'I

the "unconstrained" cost V (x j)

(ii) for each form transition probability discontinuity

V.. (2) (for icc., Z=l...,v..-i), which is denoted]I 1 31

by Yk~ (t) for some te{l,... ,+i -l}, we must
k~l k+l

consider

t+1, L(,
* the "left constrained" cost Vk  j)

if

^ y (t)Ij)> (ty Ct)] +;j)Vk+l k+l Vk+l k+l

. t, R~
_ the "right constrained" cost Vk  (xkj).

is

'k+l k+l~t];) Vk-i-i k+l~t];)

This proposition is proved in Appendix C.3. The proof follows from

certain relationships between the relative values of k (t) and

k

From Proposition 5.2 we know that the mapping

k Xk+1 (xk ' rkj)

need not be one-to-one, in that hedging to points may occur.

The following proposition lists a number of general qualitative

properties of the optimal controller that are suggested by example 5.1.

In particular, it characterizes the behavior of the -Xk+1 (xrk=j)

mapping.

203



Proposition 5.3:

The optimal controller of Proposition 5.1 has the following

properties:

(1) At each time k and in each form j6M,between joining

points {6J(t): t=l,...,mk(j)-l} of Vk(x,r

k)V (x r k=)

-(xk'rk=J) = a(j)k (k r (5.47)
uk~k"0j) 2a(j)R~j) x

b2( Vk (xk' rk=j)

a~~j 2akjbR(j)kxk+l(Xk'rk=J) =aj -2a(j)R(j) -x (5.48)

(here a(j)R(j)#0, b(j).0).

(2) At those joining points 6 where the slope of Vk (xkrk=J)

I. Qk(xkCrkj)
does not change e, exists)

Xk=6
xk

f Ut (x,rk=j) and are continuous

functions of x.
k k J(t) where the slope of Vk(x.,rk=J)

(3) At those joining points 6k r s o
decreases discontinuously

aVk(x ,r k j) 'Vk(xkroj
ie xk k k ,

Xk=6 + Xk=6)

i) uk(xk rk=i) increases discontinuously at

when b(j) > (and decreases discontinuously
a(j)

at 6 when b(j) < 0
a(j) 2

. • 2 0 4



(ii) the mapping Xk 'kl(kr=j increases

discontinuously at G when a(j) > 0) (and decreases
discontinuously at 6 when a(j)< 0),

(4) The mapping

xk* xk+l (xkrrk)

has the following properties:

i) the mapping is monotonely nondecreasing if

a~j) > 0 (and monotonely nonincreasing if

a(j)< 0) for each jeM

(ii) it consists of mk(j) line segments:

one line segment with positive slope if

a(j)> 0 (negative slope if a(j)< 0) for

each Xkregion where an "unconstrained cost"

tU
Vk (xk rk=1) is optimal

V (x , = te{,.4
k k r Vk (xkIrk=j) Ik+l

rd______________ k+l
xk R (j)Rb(j) Xk -~t) 

2 (j)Hb() (t) ]

(5.49)

a constant line segment for each Xkregion

where there is active hedging-to-a-point:

xk.3 =i~ 1() tl,. k+ll }
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(iii) there are regions of x+i avoidance associated

with (and only with) each xk=S value where

the slope of Vk (xkrk=j) decreases discontinuously.

(5) Each candidate linear control law (associated with the costs

listed in (5.38)) can be optimal over, at most, a single

interval of xk values.

The proof of this appears in Appendix C.4, and it will be verified

at the end of this section for example 5.1.

Proposition 5.2 restricts the number of candidate costs that

must be considered in (5.37), and fact (5) of Proposition 5.3 says

that each candidate can be optimal over at most one x interval.

Thus we imnediately have

Corollary 5.4:

The number of pieces of the optimal expected costs-to-go

Vk(xkrrk=j) and their associated control laws are bounded above by

m1~() i+1 I'k+l +L){ji() Z .. Vjil} (5.50)

A weaker bound which follows from (5.24) is

m(j) < ~l< 1+ *~~~()l~2 L {V. (90.: Z1..V 1

iecj
(5.51)

D
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A

Note that in (5.50) the factor of 3 in (5.45) is eliminated.

Corollary 5.4 says that the number of pieces in each optimal

expected cost Vk(X(rk=j), grows

* at most linearly with the number of transition

probability pieces

at most geometrically with the number of elements

of C.; that is, the number of forms accessible from
I

j in one time step.

Suppose that the piecewise-constant form transition probabilities

in (5.3) are approximations of the true probabilities. From (5.50)-

(5.51) we see that there is a tradeoff between

. the accuracy of p(j,i:x) approximations (in terms

of the number of pieces V.. that are used)

versus

the complexity of

the algorithm computations
K

(in terms of c+i )

and

the resulting controller

(in terms of the number of Vk(xk,rkj)

and uk(x k lr k j) pieces, mk ( j ) ) .

We conclude this section by applying the Propositions and Corollaries

developed here to example 5.1.
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Example 5.1, continued:

We have already seen that hedging-to-a-point from (xNi rNl1)

and from (x_ 2 ,r 12=i) is only to the discontinuities of the form

transition probabilities V l2) -iand V 2(2)-+l (see (5.19) and

(5.43)).

Since for this example

iec

and iN=3, p i=7

the number of candidate costs that actually had to be

computed and compared (according to (5.46) of Proposition

5.2) was

5b

N-l

A

From the shapes of V (XNrN ) (figure 5.12) and VN (x Ir =1)
N N 1=i N-i N-i N-2=

(figure 5.19), Proposition 5.2 specifies that these candidates are:

vIl,U 2,L V2,U

for N-' V VN-1

(x lr 1l) :~ (5.52)
V;-l(XN-l'rN-1 =I )  2,R v3,U (.2

VN-l' Vw-1

for
1,U v2,U 3,U

V (x ,r 1): V1 4 2 ' %14 2 ' VN-2VN-2 N-2, N-2= (5.53)
V4,U  5,U V6 ,U
%-2' N-2' N-2
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1,R 3,L
Thus we see that we did not have to compute VN1  and VNL

in Section 5.3. The application of Proposition 5.2 for VN_ (x N_,r N=1)

is shown pictorially in figure 5.25. The candidate costs listed in

(5.53) are precisely those that we found we had to compute in section

5.5. We have already shownthat Proposition 3.2, 3.3 and Corollary 3.4

hold for this problem at k=N-l, k-N-2. Note that the bound (5.50)

in Corollary 5.4 holds with equality, and

rN-k(1)< I + 4k

follows directly.

5.7 Summary

In this chapter we have considered a class of nonlinear stochastic

JLQ control problems and have developed a procedure for their solution.

The basic idea of this solution procedure is simple and the solution form

is conceptually straightforward (although the notation required becomes

quite complex).

We have identified some basic properties of the problem that

reduce the combinatorics involved in the solution procedure. These

facts (and others to be developed) will be exploited in the construction

of an efficient solution algorithm in chapter 7.

1In the previous section.
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We have also identified some basic qualitative properties of

the optimal controller. These include hedging-to-a-point, regions

of avoidances, and endpieces and middlepieces of the expected costs-

to-go and control laws.

From analysis of the optimal controllers developed here we

can gain insight into the structure and nature of controllers that

use active hedging. In chapters 6 and 7 we will continue our exami-

nation of the qualitative properties of these controllers. In parti-

cular, the steady-state behavior of the infinite time horizon problem

is examined.

,
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6. QUALITATIVE PROPERTIES OF THE SCALAR x-DEPENDENT JLQ CONTROLLER

6.1 Introduction

In this chapter we consider certain qualitative properties of the

optimal JLQ controller of chapter 5, as the number of stages (N-k)

from the terminal time increases. We will restrict our attention to

JLQ problems like those of chapter 5, but for simplicity we make the

additional assumptions that

(1) P(j) = GT(J)=0 (6.1)

(2) S(j) = H (j)=0 (6.2)
T

(3) a(j)> 0 (6.3)

(4) Q(j)> 0 (6.4)

for all j e M.

We begin in sections 6.2 and 6.3 by examining the behavior of the

optimal control laws and expected costs-to-go when x is far from zero

("endpieces") and when x is near zero ("middlepieces"). Over these

regions of x values, Vk(xkrk=j) can be computed from sets of recursive

difference equations without carrying out all of the steps of section 5.4.

The equations specifying these endpieces and middlepieces of the optimal

controller are the same as those that solve certain corresponding

x-independent JLQ problems (as in chapter 3).

In section 6.4 we obtain upper and lower bounds on the costs

Vk(xk,rk-j ) when xk is between these endpiece and middlepiece regions.

When the system is stabilizable in each form j e M, the difference equations
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describing these bounds converge to steady-state values. These bounds

can themselves be bounded by certain x-independent JLQ problems (of

chapter 3). From this fact we obtain sufficient (but not necessary)

conditions for the upper and lower bounds on Vk (xkrk2j) to converge to

steady-state values when not all of the forms have stabilizable dynamics.

In sections6.5 and 6.6 we illustrate certain fundamental qual-

itative properties of the optimal JLQ controller. We do this by exploring

a particular class of problems in greater detail. Specifically we examine

the parametric dependence of

hedging regions: these are intervals of x values from

which the optimal controller hedges to a point;

specifically, the best strategy from such an x is to

use the control to drive the system into a different

piece of the form transition probabilities.

* regions of avoidance: these are x values that the

optimal controller keeps the system away from.

* the stability properties of the closed loop optimally

controlled system over different pieces (of x values).

* the existence of local minima in the expected costs-

to-go.
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In chapter 7 we will present a solution algorithm that uses the results

of this chapter and chapter 5 to eliminate many of the computations

specified by the section 5.4 solution procedure. We will also use the

problem class discussed in sections 6.5-6.6 as a vehicle for exploring

additional qualitative properties of the controller.

6.2 Endpieces of the JLQ Optimal Controller

1
In this section we study the endpieces of Vk(xk rki) and

ukk(xk rkj):

VIx ,j), uXkj) for x < dk(l) (6.5)
k k k k Xk-k)

Rek- ?ij)l(66
uk (xk'J) for xk >J(mk(J)-!) (6.6)

(for each jeM).

The basic results of this section are as follows:

(1) for finite time horizon problems, if xk is negative

enough or positive enough the optimal strategy is to

keep x in the same extreme x-pieces of the form transi-

tion probabilities p(j,i:x) for all ic (from each

j e M) for all future times.

That is, the controls

Uk 'k 1 -

" 'Le' denotes "left endpiece" and 'Re' denotes "right endpiece."

121
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keep xk+l,... ,Ix in the same extreme (i.e., far from zero) piece of the

form transition probability.

For these extreme xk values the x-dependent JLQ control problem of

chapter 5 reduces to an x-independent one. The optimal expected costs-

to-go and control laws (in each j e M) for these endpieces can be computed

off-line via a set of M coupled recursive difference equations (one set

for the left endpieces and one for the right endpieces). Thus the end-

piece functions can be computed without following all of the steps of

section 5.4.

(2) For infinite time-horizon problems, as (N-k)- these

endpieces of the costs-to-go and control laws converge

to steady-state (constant parameter) functions of x if

the dynamics in each form are stabilizable (i.e.,

b(j) # 0 or a(j) I<l).

(3) In general the range of xk values between these endpieces

becomes infinite as (N-k)-)-w. The width of xk between

the endpieces of Vk(xk,rk = j) remains finite if, once

1
the system is in form j, it cannot be in any form having

x-dependent form transition (exit) probabilities for

more than one time step.

Fact (2) is well known from the LQ case. Facts (1) and (3) are proved

in Proposition 6.1 and Proposition 6.3 respectilely.

Includi.g (possibly) j itself.
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The following proposition lists the equations for the left and

right endpieces. It is stated for the general JLQ controller of

Proposition 5.1 (with P(j), G (j), S(j), HT(j) not necessarily zero).
TT

However to simplify notation we assume that

a(j)> 0 j e M (6.7)

and we will exclude problems where the system "just coasts" in some

form j with uk(xkrk)-O by requiring

I Q(j) S(j)/2 (K T(j) H T(j)/2\
+ > 0 (6.8)

(j) /2 P (j) H T (j)/2 GT( j
Sj e M.

Proposition 6.1 (Endpieces)

Consider the JLQ problem of Proposition 5.1, where (6.7)-(6.8)

hold.

(1 F () the optimal control laws and

expected costs-to-go are

Vk(x,rk=j) = vl '

S x (H,j) = (j) + (j) + G(j) (6.9)

Uk x, =j) 1,U
k c k Uk (xkj)

SLe J)= Le +FLe (.0
= k' xKj Lk (j)xk k (j) (.0

216
.-. -- -- ,. .



(2) For xk k (mk(j)-l), the optimal expected costs-

to-go and control laws are

j,U

[Vk Cx ,r

Wk+l
uk(xk'rk -j) V Uk (' j )

A Re x Rej k ReRe(.1

= ak (xkj) l (j) k (j) (6.12

(3) The parameters in (6.9)-(6.12) are computed recursively,

backwards in time from N by

2 R Le

aLe a j)R(j)k (j) (6.13)

HkR(j)+h 2 (J) l ( j )

^Le
a(j)R(j)b (j)

HL(j) k+1j(6.14)

R(j)+b[2 (j) (j)

2 2
b (j)[H (j)] (.5

,Le(.) e k+1 (.5
k j 2 ^Le

k+1 4[R(j)+b (i)Kk+l(j)]

where

^Le (1) KLe~i+~)
K +(j) j k+ 1 (6.16)

-p-

217
I-. 217



Gk+l(j) = X.(1) [H (i)+S(i)] (6.17)

a le (j) =i ~ (1) [G kd Ui)+p(i)]1 (6.18)i+ ee. ji +1

)

and

2a (j) R(j) -Re (j)
Re(j) = (6.19)
k R(j)+b 2 (j) Re (j)

a(J) R() +l (J)

HaRe)(j) -e (6.20)

Hk() 2 ^'ReR (j) +b2 (j)+ ( j )

2 ^Re 2ARb2(j) [Hi (j) ] 2

GRe(j) b +( ( j )  k+l (6.21)

4[R(j)+b (j)

where

^Re (j) = Xji() e(i)+Q(i)] (6.22)
i .i

+ i. j i + 
( .

iec.
J

-- R
G (j) N. [ .C.)GRe (i) +p (i)] (6.24)

k+ iec. k4-
J

.'-i 218
.*. 

° .



with terminal conditions

Le ReKLe(j) = K e(j) = K (j) (6.25)
T

HLe (j) H Re(J)H (j) (6.26)
N N T

Le Re
GN (j) = GN (j) = G T(J) (6.27)

The control law gains are

Le-
L L(j) = (6.28)

K 2 J)Le
R(j)+b (j) Kk+l (j)

aLj)b() =e i (j) (6.29)
) 2 Le

2(Rjj)+

-R~j) +b2 (j)K :+i )

ARe

F j) = 
( j ) (6.31)

ke 26.30)

2[(j)+b Cj) I (j)]

Proof (sketch): Recall that each form transition probability p(j,i)

is piecewise-constant in x with V.. pieces:
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x N ji (i-1), ji U))

i--l, ....... -i

where V(..01= V . .. )=
j1 31 31

It is clear that for xk  negative enough we will have

Xk+Z < Vji(1) Vi1 j e M (6.32)

and for xk positive enough we will have

'> i(ji- 1 ) vi,j e M (6.33)

for Z=l,..,N-k (here N<-). This.is verified in Appendix C.5. Thus

Proposition 6.1 is just a restatement of the x-independent JLQ solution

(Prop. 3.1), where we make the identifications

for left (
endpieces: ji j1

for right
endpieces: Pji ji3 Vi,j G M

Recall that the optimal expected cost-to-go Vk(xk rk=j) has mk(j)

pieces, with joining points (1)< 6 (2)<...< 6J(mk(j)-l).

For X < 6J(l) and xk > 6J(k(j)-l), the form transition proba-

bilities will not change from time k+l until time N,(ie,we will stay

in an extreme piece of each p(j,i:x)) because the optimal
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controller will not drive x past Vi (1) or V (V Zi-1), respectively

(for any i,Z accessible from j) at any future time.

Between 3(il) and 3k (mk (j)-l), the optimal controller will drive
kk

x into a different probability piecel at some time k+2,...,N. We define

Jthe switching region S of the controller from rk=j to be these xk

kk

* values

as shown in figure 6.1.

As we will see, the behavior of the optimal controller and correspon-

. ding state trajectories stating from x E S3 can involve one of
n k

several phenomena. Specifically, for - values close to zero the optimal

controller will keep future x's in the same probability piece as it

drives to zero. No active hedging is involved in these "middle pieces"

on either side of zero, as we will see in the next section. Outside of

this region (but in a ) the state will switch probability regions. However
k

this can occur in distinctly different ways (involving hedgingto points,

regions of avoidance and other types of behavior). We will characterize

these types of controller behaviors later in this chapter.

Clearly for finite times (N-k)< , the switching region S3 hask

finite width, for each j e M:

ISk'I a'6(m.k(j)-l)-6k'(l)< ~.(.5

iFrom the piece that xk+1 is in.
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It It

I SWITCHING
ItREGIONI

FIGURE 6.1: Endpieces and Switching Region for Vk(xkrk=j).
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Note that we have not yet characterized the values of (l) and
k

Now consider the infinite time version of the problem, where we

wish to minimize

(N-i 2 2 )] 2  )I(.6
lim EJ I [ukR (rk)+xklQ(rkl] X K (r (.6

(N-k) k=k 0  
N

0 0
subject to (5.1)-(5.4) and (5.6).

We consider the existence of the limiting functions

V (xj) lir Vk (xk=x,rk=j)

(N-k) -

VRe (xj . Rev0 (x,j) = lim VK (xk=x,rk=j)
(N-k)

Since the endpiece costs-to-go are obtained in Proposition 6.1 by

equations which correspond to x-independent JLQ problems, Proposition

3.2 gives necessary and sufficient conditions for there to exist

steady-state endpieces to the expected costs-to-go and control laws

in Proposition 6.1, as (N-k) grows large. We have directly the

following:

Proposition 6.2: Consider the JLQ problem of Proposition 5.1 where

(6.1)-(6.4) hold. Then if we take

P.. = \.. (1) vi,jetM,
31 J1
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then conditions (l)-(3) of Proposition 3.2 are necessary and sufficient

for the solution of the coupled difference equations (6.13)-(6.18),

(6.25)-(6.27) to converge to a unique constant set of nonnegative steady-

state values {K e(j)> 0, j e M} as (N-k)-, given by the M coupled

algebraic equations

a 2 (j)a(j) ( ) KLe (6+Q.3
iec, .jLe j)

V (x) = K (6.37)R(j)+b2(j) [ [ j(1) [KL (i)+Q(i)]]

for j e M. with the optimal steady-state left endpieces

v~ xj-"= (j) (6.38)

The steady-state left endpiece control laws are 0. '

Le Le
u., (x,j) = -LC (j)x j e M (6.39)

where the time invariant gains are given by

LLe(j) KLej) b() (6.40)

K00 j a(j)R(j)

Similarly, if we take

Pji ji ( ji)  for all i,j e M,
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then conditions (l)-(3) of Proposition 3.2 are necessary and sufficient

for the solution of (6.19)-(6.27) to converge to a set of unique finite

constant nonnegative steady-state value 1Re i)> 0, j}as (N-k)cj

given by the M coupled algebraic equations

a 2 ~~~ ()VE~X (.)[KY i+Qi]

2 ()ERe ) +Q(.aRj)Rb(j)E ji ii (6.41

for j 6 M. with the optimal steady-state right endpieces

Re~xj x2Re
V (j)=xK, (j) (6.42)

u R (xij) =-L~e (j)x (6.43)

where

LRe () K Re () b (j) (6.44)
00 0i) a(j)R(j)

Since we are considering a scalar x problem, if the dynamics in

each form are stabilizable then the expected costs-to-go (from each

form) will remain finite as (N-k)--. Stabilizability is trivial to

check for scalar systems: b(j)#O or Ia(i)I<l is required, for each

je4. If any absorbing form j (ie., p. =1m) is not stabilizable then

* the expected costs-to-go becomes infinite for all forms from which

j is accessible.
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If any nonabsorbing form j (ie., P. <1) is not stabilizableJJ

then the existence of steady-state endpieces (and costs-to-go) depends

upon the dynamics of, and transition probabilities to, all forms ac-

cessible from j. The existence of unstabilizable nonabsorbing forms is

not out of the realm of possibility in failure prone systems. For

example such a form might represent the temporary loss of an actuator

until it is repaired. The existence of finite steady-state endpieces for

systems having these forms is characterized by the necessary and sufficient

conditions of Proposition 3.2, which reduce to the following:

There exist constants F. for all iEM such that:

(1) For each closed communicating class C. (having two or moreJ

members), there exists a set of finite, positive scalars

(Z1 ....Z 1j[I satisfying the coupled equations

2
t-l 2t Qi + FiR

=. p.) p.(a.-b. F.) 1Zi  (1-P ii) . Pii (a i- i

t=l +

Zee. -PiiJ
Z~i

for all ieC..
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(2) There existsa set of finite positive scalars {GI ,. G T

satisfying the coupled equations

2

G. (1-pp (a.-b.F.) , G
1 11 +

(.eT ii

(for all i E T C M; T is the subset of transient forms in M).

(3) all absorbing forms are stabilizable.

The reason that these conditions are so complex is that the controller

must account for an extremely wide range of possible behaviors. For

example, it is not enough that the system will eventually enter a sta-

bilizable state with probability one, as we will see in example 6.2.

When the only unstabilizable forms are transient forms (i e T)that are

not accessible from any form in their covers i e C. except themselvesJ

(that is, once we leave i we can't return), then corollary 3.4 yields

a sufficient condition for the existence of steady-state endpiece cost

functions that is easier to test than (l)-(2) above:

2
pia. <11

ii!
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Let us now consider the growth of the switching regions

S J 6(mk jJ k (6.45)

as (N-k) grows large. If this quantity were to converge to a finite

value as (N-k)M - it would mean that for xk negative enough (or

positive enough), the optimal controller does not make use of the

knowledge that the p(j,i) can be changed by active hedging. This

situation will obviously arise if none of the form transitions that

the system can make once it is in j are x-dependent (since active

hedging will be of no use). Finite switching regions also arise when

the system cannot be susceptible to any x-dependent p(i,Z) more

than once, after it has entered j. In general however, the switching

regions grow in width without bound as (N-k)- •

Proposition 6.3 (Growth of Switching Regions)

Consider the JLQ problem of Proposition 5.1. For each form j:

(i) If, once the system is in form rk = j ,all of the

form transitions that t'.e system can make are

x-independent then Vk(xk,rk j) has one piece

ink(j) 1 iall k
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(ii) If, once the system is in form rk = j, all

of the form transitions that the system can

make are x-independent except for (at least) one

that has a single transition probability dis-

continuity at x = 0, then Vk(xk,rk j)

has two pieces

--~j z

with
6 (j) = 0 (joined at zero)
k

and

=0

as (N-k) .

(iii) Assume that each form has stabilizable dynamics.

If, for rk = j, the system cannot (from time k+l

to N) be in any form having x-dependent exit pro-

babilities for more than one time step then

will remain finite as (N-k)- .

Note that the s-ystem must have p(j,j) = 0 if p(j,11 is

x-dependent for any i e C

If one or more of the form accessible from j is not

stabilizable then Ij- as (N-k)
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(iv) if for rk = 1 it is possible to repeat an

x-dependent from transition (from j or from any i

accessible form j, including possibly p(j,j))

with transition probability discontinuities

not all at zero, then ISj [ x as (N-k)M- .

Proof: (Sketch)

Parts Ci) and (ii) are obvious. For part (iii), since there

are only finitely many forms then after a finite number of times

(say m) the system will have entered a stabilizable form i that

satisfies part i) or part (ii). Thus as (N-k)c, since

k0 we have finite. For parts (iii) and (iv), if

one or more of the forms accessible from j is not stabilizable

then jSk 4 c since the expected cost-to-go in this form becomes

infinite as (N-k)-*.

In (iv) if all of the forms are stabilizable then the ability

to repeat an x-dependent transition makes ISI grow without bound.

The basic idea is as follows: Since each form j is stabilizable

we have by Proposition 6.2 that the steady-state endpieces

exist. The closed-loop optimal gain in the left endpiece becomes

arbitrarily close to:
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2.

(a • . b (j) LeaJ " (j) R(j) o J

(6.46)

a( + b 2 (j) Le (j) (6.47)

R(j)

as (N-k)- . This limiting value of the closed loop optimal gain must

be stable if the steady-state endpiece cost functions of Proposition

6.2 are to be finite. That is, we must have

~j) < 1 + b K)Le
a(j) R(j) (6.48)

In appendix C.6 we show that the condition in (iv) and (6.48) make

j IS~l-- as (N-k)-.

The steady-state endpiece functions Vle(x, j) and Vle (x,j) areCO 00"

useful in describing the asymptotic behavior of the optimal JLQ controller

even though the switching region between the endpieces becomes ar-

bitrarily large (in general) as (N-k)-. In particular, they are useful

in "finite-look ahead" approximations of the steady-state controller

which will be discussed in Chapter 7.

This completes on discussion the endpieces of Vk(xk,rk=l) and

uk(xk,rk=j) Several examples will be presented at the end of the

next section of this chapter.

23
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6.3 Middlepieces of the JLQ Optimal Controller

In this section we consider the behavior of the optimal JLQ con-

troller of Proposition 5.1 near the origin, when the x-costs are

simple quadratics (i.e., when (6.1)-(6.4) hold). That is, we examine

here the middle pieces 1of V CXkIrk j) and uk(xk~rkj) for each j 6 M:

LM
Vk (x'j for 61<x,< (6.50)

LM
11k x.kIj)

RM
Vk (xk..j)

for ck<k (6.51)

uk (xk

where

5) max {63()-)< 01 (6.52)
ik k

Tj4min OjM~> 0} (6.53)

where

As we will see, if there are no form transition probability

discontinuities at zero

V. WO)O I~,. ,.- for i,j 6 M

1The superscript "LM" and "RM" denote "left middlepiece" and "right

middlepiece'; respectively.
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then the left and right middle pieces in Proposition 6.6 are given by

the same equations. That is, there is a single middlepiece valid in

d< <~
=k X k < k

given by

k (k'j ki xk

at each time k and in each form j. The basic results of this section

are as follows:

(1) for finite time horizon problems, if xk is close

enough to zero the optimal controller keeps xk+1 ....

4 XN in the same close-to-zero pieces of the transition

probabilities p (j,i:x) (and x is driven to zero).

The controls

do not actively hedge (i.e., don't change form

probability pieces)from the close-to-zero piece that xk+ 1

is in)because there is no advantage in doing so. The best

strategy for these x close to zero is just to go to zero.

As with the endpieces, the middlepieces correspond

to x-independent JLQcontrol problems. The middle

pieces of Vk(xk,rk=j) and uk (xk,rk-j) can be computed

via sets of M coupled recursive difference equations.
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(2) For infinite time-horizon problems, as (N-k)-

these middlepieces converge to steady-state

(constant parameter) functions of x if the

dynamics are stabilizable.

(3) At all times, the widths of the middlepieces are

finite (except when a middlepiece and endpiece

are the same at all times for some form j, because

there are no form transition probability disconti-

nuities on one side of zero for any form ac-

cessible from j).

The above results are obtained in Propositions 6.4, 6.6 and 6.5, res-

pectively. We first have the following:

Proposition 6.4: (Middlepieces)

Consider the JLQ problem of Proposition 5.1, where (6.1)-(6.4)

hold.

(1) For < x 0 the optimal expected costs-to-go

and control laws are

Vk(Xk~Irkj) = V'(zk, J)

Uk(xkrk=j) = L (xk'j ) (6.54)

(xklr=j) 23

LM,
= ~Lk))x~k(6.55)
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(2) For 0 < x.k :S6 the optimal expected costs-to-go

and control laws are

Vk(xklrk) k u(xkj)

k k (j)x (6.57)

(3) The parameters in (6.54)-(6.57) are computed recursively,

backwards in time from N by (6.13)-(6.31) where, for each

i,j e M we make the substitutions

LM replaces Le

X.(i) is replaced by X..i (LM), the value of

p(j,i,x) valid for x e(max{V. .<0},0)

RN replaces Re

X..(V.)is replaced by X. (RH), the value of
)2. 3)2.

p(j,i,x) valid for x e(0, min{v. .>0}).

* Proof (sketch):

This proposition is a restatement of Proposition 3.1, where

Ofor left p. = Xj, valid in (V..,0]
middlepieces: j. ji

fo igtp. = X. valid in [O,v..)
middlepieces: j il -]
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where

V. m ax{v.. (Z)0} (6.58)

V min (V. (Z~) ;O} fqr all, xj G M (6.59)

2
We have only the x.k turn in (6.54), (6.56) because of (6.1) -(6.2).

Consider figure 6.2. We see that there are two switching regions

jL
*left switching region S k

*right switching region Sjk

k

which, together with the middle pieces, constitute the switching

region Sj of figure 6.1.k

For ,keS 0) and Xke (o, V) the form transition pro-

babilities will not change from time k+l until N because the optimal

controller is (at xk+l) in the probability piece that contains (or is

bounded by) zero. That is, for these x"k values the controller does

not actively hedge with uk+l,-. UN-..l The following proposition char-

acterizes the values of 0~ and Zi-k k

Lq

Proposition 6.5: Consider the middlepieces of Proposition 6.4.

(1) If there is no form transition probability discontinuity

to the right of zero for any p(j,i) (Vi e C.) and for any

)I

p(Z~Dt) (WZ accessible from j) then

V (x r j) has only one piece for x > 0.

236

.ih wthn region .j k



*~~~~~Q %- 7 rr---

That is, right middlepiece V4(j) extends to +

T? by (6.53).
k

(2) Similarly if there is no form transition probability

discontinuity to the left of zero for any p(j,i)

(i e C) and for any p (Z, t) (W~ accessible from j)

then Jj

Vk x(k = j) has only one piece for k<; 0.

That is, left middlepiece V (j) extends to ~

-kk

(3) Now suppose (1) does not hold. Let

. ~i ieC.
-min v..(t)>0

Then at each time k N 1-1, 14-2,...,
0

0<~ <ai) +R(j Kk+l(] (6.60)

In addition the {63 lk = 1-,1-2...} are related as follows

if j e c.

k+lr 20 < < +(6.61)
-k -a (j)L' R (j) Kk +l
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(4) Now suppose (2) doesn't hold, L~et

Then at each ,time k =N-1, N-2,.,., k
0

I~+ LMj K(] < S < 0 (6.62)

In addition the [63 1k =N-l,N-2,..] are related

as follows, if je C,:

[:k~ b' (j) -LM ] (j) < _ (.3
a (j) 1+ R(j) 'k+l(j k ~~(.3

The proof of this proposition appears in appendix C.7.

It is obtained by direct calculation from the optimal closed

loop dynamics in the middlepieces, as specified by

(6.55), (6.57).

we now consider the existence of steady-state middle pieces

VL1(X,j) l= (N-k -x,x r _j)

1:V(xj =lm V*I(x=xr=)

CO(N-k)~ kj

for the infinite time horizon problem.

As in Proposition 6.2, we have directly the following:

Proposition 6.6: For the problem of Proposition 5.1 where (6.1)-(6.4)

hold, if we take
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Vk(Xk, rk= 0
I III

". I III
I II I Re

Le II Vk(Xk,j)
k (Xk, , 1 LEFT RIGHT RIGHT

MIDDLE MIDDLE I ENDPIECE

LEFT I PIECE PIECE
ENDPIECE I Rm J

JL VV(XA J ----) jR

Itk

I I I I

LEFTI RIGHT

SWITCHING SWITCHING I
REGION I REGION I

a k(l) akI kkr,(

FIGURE 6.2: Switching regions, endpieces and middlepieces
of Vk (Xk, rk-j).
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P.. X.(LM) for all i,j eM

or 
( M

then conditions (l)-(3) of Proposition 3.2 are necessary and sufficient

for the solution of the coupled difference equations of Proposition 6.4

to converge to the unique constant sets of steady-state values

{K_(j) > 0 j je MI for left
middlepieces

RM
(K_ OP) 0 , j e MI for right

middlepieces,

as (N-k)--~ given by the solutions of the sets of M coupled algebraic

equations

a (j) R(j) ( X (LM) [ (iW+Q (i)]IJ

K' (j) =2(6.64)

i6C.

a2 (j) R(j) X.. (RH)[ M()Qil

LH 2L 2

V(R (~j)= K (j) E X..(M

LM 2LM
u , (X, j) x -L00 (j)x

(6.66)

u00 (x,j) -L , (j)x
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where

tLM LM
16 (j) =K (j) /a (j)

~j K(j)/~j)(6.68)

L6 (j) K. (j/aj

-These middlepieces are valid

- for RM (j): 0 <x< (.9

for V (j): 6 < x< 0

*where, if (6.60), (6.62) hold:

0~ ~ <_ z!<+RM <g (.0

-00 < .a.. + b (j) j< (6.71) 2

As with the endpieces we have that if each form is stabilizable then

* (by Corollary 3.5) these conditions are satisfied and the steady-state

middle pieces exist. And for transient forms that the system does not

* return to after leaving, we can relax this stabilizability requirement

* to

2
p a. <1
ii i

*by Corollary 3.4.
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Example 6.1 (Example 5.1 Revisited)

From proposition 6.1 we can compute the endpieces of Vk(xk,r k=l)

and Uk(xklrk=1) recursively. We find that

V (xk,rkl) = Vkxkrk=) = xk

, = (x.Kr=-1e = R k
,k k

~~~~~~Uk (X.Krk=l) ~~kr~) L 'x

where

K (1) K Re
N (1) KN (1)=O

La e 1+~ Le 3
Re~l 1 S l 4 1 k+l(1 ) + -ZKkl(2 )

1 Le 32 + (1) +- Y (+12)

Le Re
Lk (1) =Lk (1)

vk(xkrk l) and _k (xkrk=l) are the same in this example because of

the symmetry (about zero) of the form transition probabilities.

From Proposition 6.6 we get the middlepieces

LM VRM 2 LM
Vk(,ckjcl) = Vk (x.kI1) =XK k ()

LM
Uk (x.k") =uk 1 x~1 Lk (l)xk
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where

LM R
KN (1) =K (1) =0

N N

+ LK 1)+ Kk~ (2)

3 LM (1 1K (22 +-I l) - C2
4 K +1 4 k+l

k ~1 ) =k 1 (1)

The values of these endpiece and middlepiece parameters are listed

for several time stages in table 6.1.

Endpieces Middlepieces

LI M II PM Le Re Le Rek KtM(1)=K ()L~)L(1) K (1)=K (l)=L ()=K (1)
k J C KKL

N

N-1 .7647058 .636363

N-2 .7821909 .694868

N-3 .7834843 .6995943

.7836889 .7000659

TAIBLE 6.1: Middlepiece and endpieces for Example 6.1

Since b(l)#0, these parameters quickly converge as (N-k) increases to

the steady-state values

RM I

K (1) KLM(1) .7836889

K L (1) K Re (1) .7000659
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The following two examples further illustrate the qualitative

properties of these middlepiece and endpiece cost functions. In

particular, example 6.3 demonstrates that the endpiece and middlepiece

functions can become infinite as (N-k)- even though the cost-to-go

is, in fact, finite with probability one.

Example 6.2:

We consider the foliowing system:

xk+l - 2Xk if rk=l

1 ir'k+l -k if r --2
kl 2Xkk k

0 if IxI<l
p(1,2:x)

1 X=1/2 if IxI>l

1 if IxI<l
P (2,1:X) =

I1/2 if IxI>1

The form structure and transition probabilities P(1,2:x) and

P(2,1:x) are illustrated in Figure 6.3.

We seek to minimize

N-I 2 2

( x'k+l + k~ NUk 0  UN- 1 k~0
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P(1,2"x)

- (a)P(11:) I-P(12:) 0 ( :)I-P2Jx

6 2
]I

il POl, 2: x) P(2, 1: X)

X /2 1/2/ 1/2

--I-i 1 x

(b) (c)

Figure 6.3: (a) Form structure and probabilities (b) p(l,2:x)
and (c) p(2 ,1:x) for examples 6.2 and 6.3.
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Let us consider some qualitative properties of the optimal expected

costs-to-go Vk ( 1rkl) and Vk( ,rk=
2 ). In form r=2 the system is

controllable. Thus we know that Vk(xk,rk= 2) is bounded (for any finite

x) since the control

-a(2)k b(2)k

will drive xk+l to zero with a (nonoptimal) cost of

a 2 (2) 2

b 2(2) x

Note that the system is not stabilizable in form 1. Thus the value

2
of Jlx will double and a cost of xk+ will be changed at each succeding

time, until the system jumps into form r=2. Once it get into r=2, the

expected cost-to-go is finite.

Since p(l,2)> 0 for Jxj>l it is clear that the optimal cost will

be finite with probability one as (N-k)-. As we will see, this does

not guarantee that the expected cost-to-go Vk (,rk l) will remain

finite, however. That is, the convergence of the cost-to-go with

probability one does not imply that the controlled system is moment

stable.

From Proposition 6.1 we have that
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Le(1= (1) 4 + Le( 1 ) 1 Le

1 e 1 +e(2 1

.2) K (2) -- (e

LLe1 LLe

Ke (1)K (2) = 1
N N

From the first of these equations we can verify that there is no

finite positive steady-state value K Le(1). If the steady-state values0L

KLe(1), KLe (2) were to both exist then they would have to satisfy

K"T (1) =4 + 2K L e (1) + 2K' (2)

hence

K'(1) =-4-2K'e(2)

For any KLe (2)> 0 (which must be the case), KLe(1)< -4. ThusCO

Le
we see that K (1) grows without bound as (N-k)-.

However,

KLe (2) 1 + Le Le(

(2) (1)00 4 K Le(1) 2 + K*k+l ' k+lJ

2 + L + e¢
(2(1)e(1
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Therefore as (N-k)- and KLe(1) we have

11

uir K (2) =1/4 1(N-k)-+
2

That is,

K' (2) = K (2) =1/4

From Proposition 6.4 we have

LM RMLMK (1) = (1 4 [l+Kkl1(l)]

L M (2) = 1(2)= LM

l+[l+ LM (1)]

where

Kk (1) Kk K(2) =1

Note that these middle piece costs are not coupled. This is because

the middlepieces are valid only in a region contained inside the

interval (-1,1), in which form r=l is an absorbing form.

From the above we see that as (N-k)-,

LM RM

".(1) 2 1 )
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become infinite and

LMM LM RMK, (2) =-* 2 1/4 K' (2) K' (2).

The values of the quantities described above are computed for four

time steps in Table 6.2.

k Le Re Le Re2 LM RM )=M (2k ( Kk (1) Kk (2)= (2) KkL(1)=KRM(1) k2)=K (2)

N 1 1 1 1

N- 8 .1666666 8 .166666

N-2 20.333333 .2089041 36 .225

N-3 45.084474 .229269 148 .243421

N-4 94.628202 .2398609 596 .248333

1/4 1/4

TABLE 6.2: Middlepiece and Endpieces for Example 6.2

Note that for both the middlepieces and endpieces in form 1, the

sufficient condition for finite steady-state costs of Corollary 3.4

is not met. That is,

P 1a 2 (1) > 1
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This is illustrated in figure 6.4. However the cost-to-go

Vk (xkrk=l) is finite with probability one.

In the next example we let p(l,2:x) for [xl>l be a parameter.

If the probability of switching from r-l to r=2 is high enough, the

endpieces of Vk(xkrk=l) remain finite as (N-k) increases but the

middlepiece of Vk(xkrk=l) still blows up.

Example 6.3: We generalize the previous example by considering

arbitrary X values:

p(1,2:x) =

0 ixi< 1

Then

LeRe Le Lee(1) K (1)= 4[l+(l-X)Kk+l(1)+ Xi+l( 2 )]

1 [1+ Le 1 Le
S(2 C(2) = (2)

(2)= +(+ L e ( 1 )~ Le

with (1(1) = %CM(l) and K M(2) S KkM(2) taking the same values

as in example 6.2.
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for middle pieces: 2

1t a :4 b(2): 1 0
b(1):O

for end pieces: -x12 Q

P1ja 2 b(2)-1 O
b():O

Figure 6.4: Form structures applicable for endpieces and
middlepieces in examples 6.2 and 6.3.
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From Figure 6.4 we see that the sufficient conditions for the

existence of steady-state middlepieces are not satisfied in form 1

2
since p1lal = 4>1. But if 3/4 <A<1 then the sufficient condition

for the existence of steady-state endpieces in Corollary 3.4 is

satisfied:

2
p 11 1 = (1-X)4<1 3/4 <Al-l

When this holds we find that for the endpieces, Ke(1) K k(1)

converge to a finite positive steady-state value (as do

Le Re LM R
Ke(2) -K (2) and %L( 2) E KkR(2)) even though the middlepiece in

r=1 has infinite steady-state cost. The steady-state values of the

endpieces of V (x,r=j) are given by

.7-(56X-29)+ Cjs 6X-2 T9 24 (8X-2) (32X-12)

(0= 2 (32A-12)

4(1+ XKLe (2))
KL e (1) = Ke(1) =__.COO 4X-3

For example, take X=7/8. Then we can compute the values shown in

Table 6.3, and from the above we have that

KLe (2) = KRe (2) = -5+ A = .2135254m 8

L~e Re
K (1) = K e (1) = 9.4946778
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- k v-f =-i KW (2)~ Re (2)
(1) =Kk (1

N 1 1

N-1 8 .1666666

N-2 8.5833331 .2089041

N-3 9.0228298 .2109138

N-4 9.2496132 .2122178

9.4946778 .2135254

TABLE 6.3: Endpieces for Example 6.3.

We might quess that since the middle pieces in form 1 grow

without bound (in value) as (N-k)-w, the "width" of these pieces

is going to zero. That is,

lir 6
(N-k)-

lir 0
(N-k)

a.-
'a.•
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Examples 6.1-6.3 illustrate some of the diverse behaviors that

the endpieces and middlepieces can exhibit as (N-k)-. These behaviors

are directly related to the expected behavior of the controlled

x-process, and to the qualitative properties of the entire expected

cost-to-go Vk(xk rk). As we saw in example 6.2, for very simple examples

we can get phenomena such as finite cost--to-go w.p.l but infinite

expected cost.

This concludes our discussion of the middlepieces of V Cxk,r kj)
k k

and uk(xk,rk=j) for the JLQ control problems of section 6.1. We

have thus far characterized the behavior of Vk (xIrk=j) and

uk(xk,rk=j) over extreme values of x (far from zero) and for x near

zero. In particular, we have obtained a description of the steady-

state behavior of these endpieces and middlepieces in turns of cor-

responding x-independent JLQ problems of Chapter 3. In the next section

we consider the behavior of the controller over the switching regions

of Figure 6.2, between the endpieces and middlepieces.

6.4 Bounds on the expected costs-to-go

In this section we continue or examination of the steady-state

properties of the scalar, x-dependent JLQ controller. We are concerned

with the nature of the expected costs-to-go Vk(xk rk) between the end-

pieces and middlepiece (ie,in the switching regions of fig. 6.2). We
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develop upper and lower bounds on Vk(xrk) here that correspond

to x-independent JLQ problems. Thus bounds can be computed off line

via recursive difference equations and, using the results of Chapter 3,

we have necessary and sufficient conditions for these bounds to

converge to finite values as the time horizon becomes infinite.

We motivate our derivation of these bounds by the following

example which demonstrates that the cost-to-go, if we stay with

certainty in the "most expensive form", is not always an upper bound

on Vk (xk rk =j) and the cost-to-go, if we stay with certainty in the

"least expensive form", is not necessarily a lower bound on

Vk (xk rk =j).

Example 6.4: Consider the problem

=k k+ uk for r=l,2

where we minimizeN-1
min E k [+lQ (rk+l)+ UkR(rk)]'

and the form structure is a "flip-flop" system:

p(1,2)=l p(2,1)=l

p(l,1)=O p(2,2)=O
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Let

Q(l)=1 R(1)=100

Q(2)=100 R(2)=1

That is, the dynamics in each form are the same, and

in form 1 the control cost is high

in form 2 the control cost is low.

The solution to the LQ problem corresponding to staying in

form 1 for all times (that is, with Q=l, R=100) yields

(1) 2 K(1)

k kk

where K (1) =0N

(i) K(1)
100 (N+1 +1) 00k+l +100

(1)+ (1)
100+(N1. +1) 101+ )k+l

The solution to the LQ problem corresponding to staying in form 2

for all times (that is, with Q=100, R=l) yields

(2) =2 (2)
= XkK-

where

(2)

K(2) (2)
(2) _ k+l +100 Kk+l +100

(2) (2)1+ (%+1+1i00) i01+K2+.
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The solution to the x-independent JLQ problem (by Proposition

3.1) yields

2

where

KNCl) =KX(2) =0

Kl)-100(100 + k (2)) 10 4+100 Kk (2)
l00+(LOO +K~kl (2)) 20 0 +K.kl(2)

_ +k~ (1) ___+_k___ 
( )

_k (2) ~ l +K l
l+(l+K k+l (1)) 2+"k.l (1)

All of the above costs are listed for four time steps in Table 6.4.

* .always in always in
of of "cepexpensive" optimal solutions

formform to flip-flop
Q(2)=O0 Q1)=lproblem

time R(2)=l Rl=0
k ~~(2)() kl (2

N-1 .990099 .990099 50 5

N-2 .9901951 1.9512669 50.124688 .9807692

N-3 .9901951 2.866664 50.243994 .9808152

N-4 .9901951 3.7227189 50.244006 .980859

TABLE 6.4: Costs for example 6.4.
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From Table 6.4 we see that the optimal costs-to-go in the

flip-flop JLQ problem are not bounded by the cheap and expensive

LQ problems. That is

Vk(krk =1)> Vk1 ) (2)Vk~xk' k k (xk)> Vk (xk)

=2)<  (2) (1)Vk (xkrk) V k (xk)< (xk)

The reasors for this can be summarized as follows:

1. V (2) is not a lower bound on Vk(xkyrk) because

in the "cheap form" problem the optimal LQ

controller (assuming r,-2, Vk) spends a lot

of control energy (since R(2) is only 1) to

avoid the relatively expensive (Q(2)=100)

2
cost on Xk+l

in the flip-flop problem when rk= 2 the con-

troller does not have to spend as much energy

since rk+1 will be 1, and thus the lower cost

2 2xk2 lQ(l) =Xk+1

will be charged instead of 2Q(2) = 100 2
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2 v is not an upper bound on V (kk aue

in the "expelisive form" problem the optimal LQ

controller (assuming rk=l, Vk) keeps uk small

to avoid the relatively expensive control cost

2 2

Uk RMl 100 u

in the flip-flop problem with rk=l, the optimal

JLQ controller must spend more control energy

than this since, at the next time step,

200 x i will be charged instead of

2 2
x +lQ(€) = Xk+l

a-a

- From this example it is clear that upper and lower bounds on

Vk(xkrk=j) must take into account the form transition probability

structures. The following proposition develops these bounds.

Proposition 6.7: (Bounds on Vk(xrk))

Consider the JLQ problem of Proposition 5.1, where (6.1)-(6.4)

hold. Then for each j e M, the expected cost-to-go Vk(xkrk=j) is

bounded by

Vi (xkJ)< Vk (xk'rk=J)<V(xkhJ) (6.72)
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for each xk, where

VLB(xkJ) = 2 1 (j) lower bound (6.73)

V(xk'J) 2 UB(j) upper bound (6.74)

with the parameters in (6.72)-(6.74) computed recursively, backwards

in time by

a2 (j)R(j) 3 (j) (6.75)"- KLB (D  L (6.75)

R(j)+b2 (j) ^B (j)

2a (j)R(j)UBl (j)
Kk (j) = (6.76)R(j) +b 2 (j) KUB+ (j)

where

( =j m" W [K+1 (i)4Q(i)] (6.77)

j ic.ji

k+l

K l(j) = max ~ * )~ii~i)(6.78)

t~,.*k+1

with

UB LB(j) KN (J) KT(j) . (6.79)
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left upper upper right
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Here Z.i  is the index of the p(j,i:x) piece that is valid for
t

x e W+l(t)-

The proof of this proposition is given in Appendix C.8.

Basically these bounds arise by taking the worst case and best case

transition probability pieces in (6.78), (6.77) at each time (for

each j e M). Thus the bounds are quadratic (not piecewise quadratic)

in x. In Figure 6.5 this upper and lower bound is illustrated for

an example problem. Note that for this particular example, the

upper bound and left endpiece are the same. That is,

V( ) L VUB ( , j ) .  In general the endpieces need not be the

same as either the upper or lower bound.

We now consider the existence of steady-state upper and lower

bounds on the steady-state expected cost-to-go:

LB AL
V. (xj) lim Vik(xk Xrk=j)

(N-k) -

UB A UB
V B(xlj) - lim V Nx -x,r mij)

(N-k) k k k

for the infinite time horizon problem where (if all of these quantities

exist):

LB UB
v (x, j) < lim Vk (=x,rk-l)< V_ (x, J)

(N-k)
As defined in Appendix C.l.
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w cannot directly apply the conditions of Proposition 3.2 to

Proposition 6.7 (as we did for steady-state endpieces in Proposition

6.2 and mLiddlepieces in Proposition 6.6) because the upper and lower

bound calculations in (6.75)-(6.79) do not directly correspond to

time-invariant x-independent pr-' ,-" choice of index (t) in

(6.77)-(6.78) may change with k, as (N-k) increases. However we can

find weaker upper and lower bounds on the expected costs-to-go that do

correspond to x-independent JLQ problems and that do converge as

~(N-k) -% .

Proposition 6.8: (Steady-state Bounds)

With

max -X(t) all i,j e M (6.80)
Ji t-l,.. ,- i

conditions (1)-(3) of Proposition 3.2 are sufficient for the existence

of a set of nonnegative scalars

iij~) 0, _e

such that, as (N-k)-a we have for each jeM

UB
Kk (j):5 K(j). (6.81)
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H ere {K(j): j 6 M} are the nonnegative solutions of the set of M

coupled equations

2

a (j)R(j)L [ Pji (K(i)+Q(i))I
( ie 1~'(6.82)

R(j)+b 2 (K(i)+Q(i)) ]

with the P.. in (6.82) given by (6.80). Similarly withJi

P .. = min X.. (t) all ij e M (6.83)
t=l,.. IV

conditions (l)-(3) of Proposition 3.2 are sufficient for the existence

of a set of nonnegative scalars

1. jY > 0 jeM

such that, as (N-k) ---. for each j c M

K(j) - K-i (j)

(6.84)

where {K(j):j e X) are the nonnegative solutions of the set of M

coupled equations
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2
!ji

a2 (J)R(j) [ [ p.ji(K(i)+Q(i))J]

iec.iK(j)= -- (6.85)

- R(j)+b 2 (j) pji (K(i)+Q(i))]
"-: iec.

with the pj in (6.85) given by (6.83). Thus as (N-k)---: we

have

UB 2 UB 2 2686VK (xj) = x KK (j) - x K(j) (6.86)

LB 2 LB
VK (xj) = X (j) -> x2K(j) (6.87)

0
respectively, for each j 6 M.

The proof of this proposition appears in Appendix C.9. These

bounds correspond to the highest and lowest possible cost parameters

at each time stage. Note that for problems with each form stabilizable,

the above conditions are immediately met.

To summarize, in this section we have obtained upper and lower

bounds on Vk(xkrk=j) that are recursively computed with an

embedded comparison of scalar quantities at each time step (in

(6.77)-(6.78)).

We then obtained sufficient conditions for weaker bounds to

converge to steady-state values as (N-k)4 '.. In Chapter 6
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(i.e., when (6.1)-(6.4) hold) the stabilizability of each form is

then sufficient for the existence of steady-state endpieces, middle-

pieces and overall bounds on the costs-to-go. Example 6.3 shows that

this is not a necessary condition.

6.5 A Single Form-Transition Problem

In this section we formulate a special class of JLQ problems

that will be used in the remainder of this chapter and chapter 7

to illustrate various qualitative properties of the x-dependent JLQ

controller.

We consider systems with =2 forms:

= a(rk)xk + b(rk)uk (6.88)

r ke{1, 2}

if jx< a
PCi,2:x)=

W 2 if lxi> a

p(l,l:x) - l-p(1,2:x) p(2,1)=0 p(2,2)=l (6.90)

The form structure and possible shapes of p(1,2:x) are shown in

Figure 6.6. There is only one possible form change here (from r=l

to r=2) and the form transition probabilities are symmetric about zero.
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P(,:)P(2,2) i

P(i,1:x)}i-P(1,2"x)

(a)

P(1, 2:x)

Wa2

W2 2 >W

*I I -rx.

(b)

P(I,2:z)

*. (c)

Figure 6.6: Form structure (a),and p(1,2:x) for (6.1)-(6.2) where

(b) w >Wit and (c) w > W
1 1. 2*
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We seek to minimize

u01 .. In E [ Rrk) +Xk+iQ(rk+l)]+ x KT(rN) (6.91)
-' 1  kk-k0

Here for each j=l,2, the following parameters are all finite

QW1> 0

Q(2)> 0

KT(j)> 0

R(j)> 0

b(j)# 0 (6.92)

a(j)> 0

>O .

and

0 < W1< 1

(6.93)O<w2<1

From the symmetry of the form transition probabilities (6.88)-(6.90)

and costs (6.91) about x-zero, it is clear that the expected costs-

to-go Vk(xk,rk) will be symmetrie about zero.

Note that this class of example problems includes example 5.1

as a special case.

268
.>. . .. . I



Note that once the system enters form r--2, it stays there. Thus

the usual LQ theory yields the following:

2
Vk (xklrk=2 ) =xk Kk(1:2) k=N,N+l,.. .,0 (6.94)

u =.Kr2 ) =Lkjl:
2 )xk kN.'...O(6.95)

where

KN(1:2) =K (2)
T

2 (6.96)
a (2)R(2)[K.k+(l:2)+Q(2))

k 2
R(2)+b (2)[ 12+()

k1:) -b(2)a(2)[K k 1 :2)+Q(2)] (6.97)

R(2)+b 2(2)[ tk~l 1 :2)+Q(2))

Since b(2)#0, Kk(l:2) converges monotonely as (N-k) increases, to

R() L2 (2)2

R2[a()1R (2) fa (2)-i 212
K (1:2) =L 2J + 2)+ 4b 2)Ma 2(2)R(2)Q(2)

-b (2) Q(2) -b (21Q(2)

2b 2(2)
(6.98)
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where k(1:2) decreases as (N-k) increases if KT(2)> K (1:2) and

increases if KT(2)< K(1:2).

Now consider what happens when rN-1221. We are given that

at time k=N,

2
V N(xN ,r N=) xN K T(1) (6.99)

From sections 6.2 and 6.3, the endpieces and middlepiece of

Vk (xk,rk=1) and uk(xk,rk=1) are given by

Vk(xk'l) = vLe2k'e(k1 20Le
(xk',) = xk k (1) (6.100)

uke(xl) - uke(xk,1) =- I (1) 6.01

an
and

RMLM 2 LM(612
Vk (xk*P) -Vi (xktl) =X.k)Ci (1)(612

XK R(xK1 M~1x (6.103)

where

KN (1) - Ke(1) - ) (1) K T(1)

and

K Le Re(1), K M (i are given by
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2 (1 () Le

RLR e( (6.104)
Kk(1 =Kk (1) =2 ALe

R(1) +b (1) .+I(i)

LRe (1 Le () _-b (1) 1
(I) -- ~1) = a(1)R(1)

where

i(i) = (1-w2) (I+l(1)+Q(1)) + K2 ( + 1(1:2)+Q(2))

and

2 ALM
a 2 (1) R(1) %+1 (1)

k() - (1) = +b 2 ( 1 )LM (1 )

RM LM ( -b(1) i)
Lk (1) = (1) a(R(1) k

where

K1)(1) (1-W1) (k 1 (1)+Q(1)) + z(r-k~l(1-2)-Q(2)

Since b(1)#0, the steady-state quantities KLe(1) Re(1) and

"K LM(1) -K (1) are finite and positive, satisfying

2 a
a (1)R(1) (1-W2 ( + W 2 .

K' e) KLe(1) ((2)

2 00()Ko (1: 2)1
R(1)+b (1) (1- 2 )(+) + 2 )

Q(1) /(2)

(6.106)
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2 1)0

K (1))Kb (1)

2 ()K~~) K1((1: 2)If

+ (Q (2) J
(6.107)

The partition of values specified in step 1 of Section 5.4 is

A(1) =(y (0),Y (1)) -0-tN N N

A N(2) ( y N(1)' Ny (2)) (-at,ca)

A (3) ( y (2) ,y (3)) (ot,00N N N

1
as shown in Figure 6.7.

The condi tional expected cost-to-go4

V(Xlr=) 2 x (t) + x.H()+ ^t
NN - N N N N

for XNe AN(t)

(1) (3) =(1-w ) (K (1)+Q(1))
NN 2 T

2

* . N(2) =(l-wl)(KT(l)+Q(l))

+W(KT(2)+Q(2))

11A

1The superscript "1" is not used in A l(t), KAtl ec. nti
N N tec. nti

section since we are only considering form 1.

272



yN (1)N (2)

N N

-a 10 a X

Figure 6.7: x Npartition for (6.1)-(6.4) example problem.
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can take the two possible shapes shown in Figure 6.8, depending

upon the values of Wit W2' Q(1), Q(2), K (1) and K (2). We will
2 T T

consider each case in turn.

Case 1: If

(W 2-W1 )[(K T(2) +Q (2))- (K T(1) +Q (I)) >0 (6.108)

hence

(i)> KN(2) (6.109)

then VN(xNIrN_=1) is as shown in Figure 6.8(a). The conditions

(6.108), (6.109) are met when

" W2 > W1  the probability of the form change is

greater away from zero than near it

* K (2)+Q(2)> K (1)+Q(l) the cost charged at timeT T
N is greater in form 2

than in form 1.

This corresponds to regulation problems in failure prove systems. The

system is operating normally when r=l and has failed when r=2. A

higher cost is charged in the failed mode than in normal operation,

and the probability of failure is greater away from the regulator

goal of zero than near it.
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A
VN(XNIrN1 2)

I 1

I I CASE 1
I I

IIrXN

-a a

(C)

A
VN(XN IrN-1 1)

I ,

I I
I I

I I

CASE 2

I I X

-a a
(b)

Figure 6.8: ANX N_=)when (a) () =- (3 )> K.N( 2) (case 1) and when

S A A

(b) KN (2) > KY1 KN (3 ) (case 2).
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Example 5.1 illustrates this situation. Conditions (6.108)-(6.109)

are also met when

" > W2 the probability of the form change is

greater near zero than away from it

SKT(l)+Q(1)> I%(2)+Q(2) the cost charged at time N

is greater in form I than in

form 2.

Case 2: If

(W-w 2 )[(KT (2 )+Q(2))- (KT(l)+Q(l))]> 0 (6.110)

hence

KN (2) > (l) (6.111)

then we have the situation shown in Figure 6.8(b). Conditions

(6.110)-(6.lll) are met in problems where the probability of transi-

tion form r=l to r=2 is at "cross purposes" with the cost structure.

The case

Wi > 2

KT (2) +Q(2) > KT (1) +Q (1)

corresponds to the probability of "failure" (i.e., changing to the

higher cost form) being higher near the regulator goal of zero than
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_N .: . . . . . . .

away from it. The case

K (1)+Q(1) > K (2)+Q(2)

T T

corresponds to the probability of "success" being lower near the

regulator goal than away from it. As we will see in the next section,

the "cross purposes" of the form transition probabilities and costs

can lead to local minima of the expected costs-to-go.

6.6 Last Stage Solution

In this section we develop the last-stage solution for the two

cases of the last section. The solutions of these one-stage problems

illustrate certain basic qualitative properties of x-dependent JLQ

controllers.

Using Appendix C.1 we find that for both cases of the last

section,

b2 (1) K( 2)

SN-1 (2) = ( R(l) (6.112)

b (1) K N(2)\
" (2) = cl+ R (6.113)

0N-1 , = i) (6.114)

b 2 (1) KH (3)

eNI(1) =-cl+ (6.115)
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and from Proposition 5.2 we find that

N=5 (6.116)

candidate costs-to-go must be considered. For Case 1

(KM(l) E {N3)> K1N(2)) these candidates are

1,U 2,U 3,U 2,L u2 ,R(617

if K.i H .(3) > K (2)

1,R 3,L
(i.e., V 'i and VNl elimnated)

and the 6's and e's in (6.112)-(6.116) satisfy

(i) < 8 1(2)< E) (2) < e6 (3) *(6.118)

For Case 2 (KN(i) 1CN(3)< N (2)) the candidate costs are

N -i VN-' VN-' VN-i' N-i

if KN ( 2 ) > KN (1) S KN(3)(619

2,L 2,R

and(i.e., 
V l and V ' elimnated)

e N-l (2)< G N_(1)< e _,(3)< G N_(2) .(6.120)
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The eligible costs for VN1 (x N-IrN-1=-) over various XN 1

values are shown for each case in Figure 6.9.

From Figure 6.9(a) it is evident in Case 1 there are intervals

of xN 1 values over which the optimal controller must involve hedging

to a point. These are'

N-1 (1 N-1 (2 (8N-i1() 6 - 3XN-1e a (1) a a(1) a a(1) a (1) "

We will now determine VNI(XNI,rNI=1) for these case 1 problems

where the costs and form transition probabilities are not at "cross

purposes". That is, where

We have already computed V (xN_,rN_I=1), uN_I(xN_I,rN_I-1) and
'N-i1 - - - - -

XN (XN ,r N_=1) for an example problem of this type in Section 5.3. The

same steps detailed there (with the shortcuts described in Section 5.6)

yield the following:

Fact 6.9: When KN(l) = (3)> KN(2) (Case 1), the optimal cost-to-go

and control laws have

N-1 = 5 (6.121)

pieces, joined at xN- 1 values
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67..

I I I
.d V ~ ii II I

I '
1,' -u -Iv1'R I

I I

N-iI

()CASE 1

I u V RV

-I* -I v

2,L I V R

3, L i v 3 , U-..

x --
tI ( I I NIN

9~/(1 NlMN.I 9 I~O (I) ON.I/0(1)

(b) CASE 2

Figure 6. 9: Eligible costs for V (x ,r =1) when
A'N-1 N-i' N-1i

(a) K (l) ~(3)> ft(2) (case 1) and

(b) KM (2)> K (1-KN(3) (case 2).
N N
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N-

1a 2(1) R 2 )(1)
-8 (+ (1) -^N- (1) R (1l))

) l][ R (1) +b2 (i) KN ()

(6.122)

(2) = N-I[(2)1) -c([)(K^(2 (6.123)

N-i a(1) a(1)R() (1)

8-(3) =-_ (2) (6.124)
N-i N-1

N-1 (4) =(- i) 6.125)

The optimal candidate costs-to-go are
vi'U(x 1,1) if x < (1)

V' 3xN._i, 1) (1)< x,_< 6N1 (2)

VN-I (XN-I'1rN-i = I ) 2,U
(xv -1') if 6_ 1 2 ) < xN_. 6N_1(3)

VN-iNN-i

2,R (4)

VN-l(xN1) i N-1(3) N-i 6N_-i
_ 3 ,U i 4 < x
v_ (xN,1) if 6 N_1(4< XN_ 1  (6.126)

Thus the optimal expected cost-to-go is given by

( x 1K_ 1 (t:1)+x_ 1H_ (t:l)+GNi (t:l)VN-1 (XN- i' N-l'aI ) ="
for N-1 (t- l )< xN-1 < 6N-i ( t) (6.127)
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',

where t=l,...,m (1)=5 and 'N (0)=-O, 6N (5)=+0 with
N-i N-i N-i

2
a (i) R(1) KN (1)

2 - -i(i:l) = 2 -K_(5:1) (6.128)

R(1) +b (i) KN (1)

2
K Kl(2:1) a (1)R(1) K (4:1) (6.129)

b2 N-i
b (1)

a (1) R(1)KN(2)

._1( 3 :1) = (6.130)
R(1)(1 1(i) KN( 2 )

H (2:1) = 2(1)R(1)c0 =-H (4:1) (6.131)
N-i 2 N-i

b (1)

H N-(1:1) = H N1(3:1) = H N1(5:1) = 0 (6.132)

22
2 (R(1)+b2(1)1 (2)) = (4:1) (6.133)

b (1) GN-i

G N_(1:1) = G N_(3:1) = G N_(5:1) = 0 (6.134)

The optimal control law is

(-LNi(t:i)xNI+FN_ (t:i)

u (x,~ -i)=N,-1 ¢_,-,r =
for 6 (t-1) < x <6 (t) (6.135)

N-i N-i N-1

with

a(1)b(1) (i)
LNI(: ) = L (5:I) (6.136)R (1) +b2 (1) % (1)
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a (1)
LN- (2:1 ) = L_(4:1) (6.137)

N-1) i;7N-i

a(1)b(1) KN( 2)
LN_1 (3: 1) 2 (6.138)

R(1) +b () KN (2)

+-e.
FN- (2:1) = = -N(4:1) (6.139)

FN(1:1) = F (3:1) - F (5:1) = 0 . (6.140)N-1 N-1 N-1

The xN value obtained by application of the optimal control

law, as a function of xN-i is

N--iNi1-S[a(1)_LN (t:l ) ]XN_I FN_I(t:I)6" x (XNl, 1 rN~1 1) =(6. 141)

"N for N-1 (t-l)<x N-I<N (t)

hence

a(1)R(1)
R1b2  -7 )XN_

21 N-1
R(1)+b (1)K

N~l

xN(xN_l,r Nl)= R( ) X (6.142)

NNiN-1 2 N-1 612

a(1)R(1)
2 x N-iR(1) +b2 (1) (3) X-

0
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N-1"N-, N-i

II 2, I3'

N-1 -- 7 -N-1 ~ N-

1Hedgel IHedgel
to~ to

\\ i\\ dSSlope / /
d ecreases-/

\I) \I 8()/I4 X

N-I N-I N -i N-i

^k N(() A F2
R M rR(1)+b 2  1+ R()+ (IkN()

Figure 6.10: V (x ,r 1) when (1) (3) > R (2). (case1)
N-1 N-i N-i N KN N

The optimal candidate cost function over each region of
X N-1~ values is indicated by the solid line.
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In Figure 6.10 VN_(xNIr 1=1) is shown for this case.

The slope of VN1 (x N_,rN1 =1) decreases discontinuously at

N-1 (1) and 6 N_(4), and is continuous elsewhere. For

XN_' (6N-1 (i), N-1 (2)) the optimal controller actively hedges to

" - +

xN = -a and, as is evident in Figure 6.10, the resulting optimal

expected cost-to-go is a quadratic interpolation between Vl'U  andN-1
2,UV -. Similarly, the optimal expected cost-to-go overN-i

NlN_ 1 (3), 6 (4)) is a quadratic interpolation between V2,U
N-1 N-i

3,U
and VNi .  The width of these one-step hedging regiorsis

~width of one- I I2( R I_________L 1 K(2)) (2()step hedging (1) [1 (l)K. +\/(ll2) 2 K ()
Sregions /) N

(6.143)

Thus we see that the widths of these regions:

2
increase as the "control effectiveness" b (1) in

R (1)
form 1 increases. (Thus we have more hedging to a

point when the control cost is low then when it

is high and we have more hedging when the input

gain is large than when it is small).

are linearly related to the ratio of

(the distance of the point we are
hedging to from zero a
( the open loop dynamics in form 1)
.(1)
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In other words the more stable the open loop

system is, the smaller the range of XN_1 values

where hedging to a point is optimal.

increase as the difference in costs between the

"good" and "bad" sides of the VN(x r( =1)
N N N-1

discontinuities, K (1)-K (2), increases. Thus
N N

if the savings obtained by hedging are very

small ((l) K (2)), the range of xN- 1 values

where hedging to a point is optimal also

becomes small.

In figure 6.11, uN-l(xN-lrNl=l) is shown for b(l)>O (if b(l)<O, the

graph is flipped around the XNl axis). The control law increases

discontinuously at xN-1 = N-1 (1), where the optimal strategy changes
+

from driving xN into N(l), to hedging to point -cte A.N(2).

Similarly, U-i (xN-l'rN-i=l) increases discontinuously at XN_=a N-1 (4).

At all other values of XN_1 it is continuous.

In Figure 6.12 the values of xN obtained by application of the

optimal control law is plotted (as a function of xNl). From (6.142)

and Figure 6.12 we can deduce that

the optimal closed loop system is more stable than

the open loop system in form 1 for case 1 problems.

That is, the optimal controller "brakes" the open loop system dynamics.

To see this note that over the regions of XN_1 values that do not
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UN-..I ('N-1 IrN-I:j

Hedge Heg

I 'A

a b(1)KN(2

12 R~) 14 2 N

R~i) b (1)) [ 1 Ri7l+ (1)>b(IM1 ]
Figure 6.11: Control law uN1(x ,'r N1]1 when KNCl)RKN(3)>KN(2)

and b(l)>O. The optimal control over each region of x N-1
-. values is indicated.
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correspond to hedging to a point (i.e., where the slope in Figure

6.12 is positive), the closed loop dynamics are

a(l) [ 2 ]<a(l) i=1,2,3

(i ) N-I (i)-

In the hedging regions xNe(0N-(1)6 (2)) and XNI e(6N_ (3),

_ (4), the optimal controller will be
N- 1

more stable than the open loop system (in

form 1) if

a(l) Ix N-11~N-U 1XNI

less stable than the open loop system (in

form 1) if

But from (6.112)-(6.116) we see that

x 60d~ W 1 '6 l (2))/1b 2 lK()XN-1 N -1 () N-1 2)
l+ () (2

'N>IXN-i> a(l) R(l) N
x N-1 e(SN-1 (3) ,6 N-1 (4))

hence

a(1)IXNI >

r$
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XN(XN...I,1)

( R(1)+b(1)9(1) IRegion of xN
avoidance

Region of x N
avoidance

)K(2))

*Figure 6.12: x N(x N-1r N1=1) when KN (1) EKN (3) > K (2) (cs
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Thus the closed loop system is more stable than the unforced system.

Note that there are two regions of x values that 'are avoided by
XN

* the optimal controller:

"'"x N  CL, CL 1 .-
[[[.[ ~R(1) +b2 W1 %(

(6. 144)

R(1) +b2 ()•
IN ~(~(l+ R(1)4b(l)KN(2)) .]

The width of each of these regions of xN avoidance is

R(1)+b 2 () N( 2 )

1- I )<2c . (6.145)
R(l)+b 2 (l)KN(l)

Thus the widths of these regions of avoidance are

. linearly related to the distance of the point

we are hedging to from zero (i.e., a)

. increase as the savings from hedging increases.

. increase as the control effectiveness

2
b2(1) in form 1 increases.
R(l)
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Each region of avoidance here is associated with a joining point

where the slope of VN-1 (xN- rNI=1) decreases discontinuously

(i.e., with 6S_(1) and 6N(4)). These are the x values where
N-1 N-1 N-1

two candidates costs cross.

We now examine Case 2 problems where the x-costs and form

transition probabilities are at "cross purposes." That is, where

A

~N

as in Figures 6.8(b), 6.9(b).

The eligible costs for VNl(xN_lIrNl=I) for this case are shown

in Figure 6.13 (as in Figure 6.9(b)). By the following arguments

(each indicated on Figure 6.13), we can eliminate many of these candidate

costs from consideration over certain xNl regions;

1. As noted earlier (in 6.117), Proposition 5.2

2,L 2,R
eliminates VN_1 and V N_ from consideration

(costs corresponding to hedging to the "wrong"

sides of VN(xNIrN _ =1) discontinuities).

2. %( 2 )> KN(1) implies that %l1)< KN1(2)hence

l 2,U
, N 4 VN (as functions of xN ). SoVN-i N-1i

2,U
VN_, is not optimal over

xN (60 N (2)/a(1) ,N (2 )/a(1)). Similarly,
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2, is not optimal over 3/l)

1,U 3,U (aG (2)/a~i)) since V V (a
N-1 N-i N-i

functions of XNl

3,L 3,U 1,U
3. Vi> l Vl for XN< O~(2)/a(i),

3,L 1 ,R
so V is not optimal here. Similarly, forVN

N -ilV-

over xN> eNl1(3)/a(l).

Thus we see from Figure 6.i3 that

isU otMal for E)< e()/a (1)VN-lI i pi XN1 N-1

3,U
*V is optimal for x >0 (3) /a (1)N-iN-1 N-i1

and for XNIWe~ l/a(l), eN0 C3)/a(i)) the three candidates

1,R 2,Uj 3,R
VN-, V l, VN- are still eligible.

* ~~Solving for the intersections of V lR aN -1U efndta

1, R 2,UJ
V_ -v' =0 at

N1(2) [ G (1)]
xNN-i ai1

(6.146)r (2) N 2 -i M)e(2)]
a a(1) [N-1 -1~ N2 - 1) .N1

292



V I, IG V 1,R G
2 LU

Figure 6.13: Eliminating candidate cost-to-go functions over different

A A

regions of lues when (case 2);

F. indicates that the specified candidate is eliminated
over this interval of xN_1 values by step n in the text.
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The intersection in (6.146) that is greater than eN- (2)/a(1)

N-1 (2)1 (NN(i
a (1) - N-1

N-i

This is the point at which the optimal candidate cost changes from

1,R 2,U
V, to V Similarly, the optimal candidate cost changes from"" N-i tVN-i1

2,U 3,LV toV at
VN-i N-i

N _ 2)9 ()

N-i a(l) I Nl2

Collecting all of this information yields the following:

Fact 6.10: When K(2)< KN(1) K (3) (Case 2), the optimal

cost-to-go and control laws have

'N-1 (1) =5 (6.147)

pieces joined at XN_1 values

N-(l) = N- (1) -a [R(1)+b 2

6 (2) = N- = [- 1- ]N-i~l al) N-iR~l J ~ )
- @N-I((2

- R )+b2(1) (1)

N6 1492N
-a Ri. -( •)1a;(l) R(,) 1 )b2l N() -1

62

(6.149)
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- (3) =-6 (2) (6.150)
N-1 N-i1

6-(4) =-6 () (6.151)

N-1 N-1

The optimal candidate costs-to-go are

V U(x ,) if x (1)
N-I N- N- I N-I

1,R(2
VNIR(xN_,l) if 6N 1 ( 1)< XN-< 6N-(2).N -i N-i -- i N-

V (X ,r =l)=
N-i N-i 2,U

V, (x ,) if 6 (2)< x < 6 (3)
VN-i N-i' N-i - N-i- N-i

3,L

V _(x _,i) if' 6NC3)< xNl <6_(4)

v N_ ) if 6 (4)< x
VN-i -l N-i1 N-i (6.152)

Thus the optimal expected cost-to-go is given by (6.127) where

{Kl(t:i), HNI(t:I): t=l,...,mNl ()=5 }are the same as for the

earlier case (as in 6.128)-(6.152)) except that

2
G N(2:1) = (R(1)+b 2 (1)1(l)) = GN_(4:1) (6.153)

b (1)

G _(:1) = G (3:1) = G (5:)=0
N-i N-i N-i

The optimal control law is given by (6.135) where

{LNl(t:I): t=l,...,m(Nl()=5} is the same as for the earlier case

(as in (6.136)-(6.138)) except that
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F (2:1) = - - (4: 1)
N-].b(1) N-i(6.153)

F (1: 1) F (3: 1) =F (5: 1) =0
N-i1 N-1 N- I

The xN value obtained by the application of the optimal control

law, as a function of XNDis given by (6.141). Hence

a(1) R (1)KN1 ~

* -. ~R(l)+b M1K(2 N-
N(1

N~xN-1 N-1=) a (1) R() - 614
2 A N-i1

R(1)+b (1)K (3)
N

We see that for this casehedging is to the other sideof -CL and

+ai (since VN(Nrl)is now less on the opposite side of these

XN values). in Figure 6.14, uN1xl ~ =1) is shown for b(1)> 0.

The control law increases discontinuously at xNi=N (2), where the

optmalstrategy changes from hedging to the point -a 6 A (1) to
N

driving xN into AN (2). Similarly, UN 1(xN-1rN =1) increases at

N- -1N-i N-

iscotiuos



UN1(XNtI,rN-f :1

I ab(I)KN(2)

I Iu

I~eHedge

'-aa

ab NlK () RN-1)+b 8() B1) 4

I~dg

2Y,

[N ~~~b2(l) N ( l+2lKN2
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The value of xN obtained by application of the optimal control

law to XN_ 1 is shown in figure 6.15. Recall that in the earlier case

(where KN( 2)< KN (1) Z K N(3)) we saw that the optimal closed loop

system was more stable than the open loop system in form 1. This need

not be true when IN( 2 )> KN(l) - K(3). In particular, the optimal

controller in form r-l

is more stable than the open loop system for X-l

values from which we do not hedge to a point.

may be more stable or less stable than the open

loop system over xN- 1 values from which we hedge

to a point, depending upon the values of the

quantities

b (1) and (K (2),- (1))
R(l) N N

To see this we note that (as in the earlier case) for XN 1 regions

where the slope in Figure 6.15 is positive, the closed loop dynamics

are

2 ]1 < a (1) i=1,2,3a~l) b2(l) KN(i)
R(1)

But in the hedging regions x N1e(6N- 1 (1), 6N- (2)) and

x (6 (3), 6 (4)) the optimal controller is more stable
N-1 N-i N-1

298



XN1,l)

Region of

/~ 2 N avoidance

R(1)+ ()KN(K

R(1 )+bp2 (1)KN(2)

Region of
xNavoidance

--a

Fiur .1:x (x ,r 1]) when K(2) > (1) E K (3) . (Case 2).
N N-i' N-i N N N
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if a() Ix.._l> a and less stable if a(l) IxN_11< c. In tese

hedging regions

sN-l (2)1 < IxN_ll < 1 l(1) I

hence from (6.148)-(6.151),

R(1)+b (i)K (1)
2(N <IX j~)

b2(l) R(l)+b (1)Nla(l)<
(1b( KN ( )

b( 1) (6.155)
< (l)+ (1))

R(l) N /

Thus, we have a(l) IXN 11> a for all xN-i in the hedging regions

unless

R(1)+b 2 (1)K((2)

This can happen if and only if R ((1_+_1_K

((l) (6.157)

R ()l+ () K(2

That is, the optimal closed loop system will be less stable than

the open loop system in form I for some XN 1 values where the

optimal strategy is to hedge to a point, if and only if
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(1) The excess cost %( 2)-%(l) of being on

the wrong side of the hedging point is

large enough

(2) the control effectiveness b 2(1) is small
R(l)

enough.

Note that there are two regions of avoided xN values in Figure 6.15

(as in the earlier case). They are

+2(A
XN. 1-R(I) +b (i)KN (l)

N -R(1)+b 2(1)U (2)
(6.158)

R(1) +b2 (1) K(2)

The width of each of these regions of x avoidance is

a <a (1- R b2 1KN2 )- 2 a .(6.159)

R(1)+b (W)KN(l)
N- (6.1)

Comparing (6.159) with (6.145) we see that the width of these

2regions of avoidance varies with a, b (1)/R(1) and the savings from

hedging (here K (2)-i (1)), as in the previous case.
N N

Each region of avoidance is again associated with a joining point

where the slope of VN l (xN_ l ,rN_1=1) discontinuously decreases (i.e.,

6 N- _(2) and 6 N-(3) in this case).
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There are two different shapes that the expected cost-to-go

VN_ 1N1 ,rN1=1) can taken when KN( 2)> &(1) KN(3 ). These are

shown in Figure 6.16. In both Figures 6.16(a) and 6.16(b), the slope

of VN-1 (x N,rN1 =1) has a negative discontinuity at 6 N1(2) and

N-1 (3), and is continuous elsewhere. For XNle(6 (Nl1), 1(2)) the

optimal controller actively hedges to xN = . The resulting optimal
1,U

expected cost-to-go is a quadratic interpolation between VN_1

2,U
and v2N Similarly for x e(N (3), 6 (4)). In this case

N-i N-1 N-i N-i

(as opposed to Figure 6.10), the V curve is below the v2,U
N-1 N-1

curve.

The width of the one-step hedging regions for this case is

(width of one-\ (b 2( \/N(2b2(

step hedging Ot (2) -- Nt 1+ 2

(regions /K Nal/ (1)

(6.160)

(compare to (6.143)). The comments following (6.143) regarding the

width of these hedging regions apply for this case as well. Thus

when (1#0, the optimal expected cost-to-go VNlx N _,rN =l) for all

problems of the class formulated in Section 6.5 involves active

hedging to a point.
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' VN.I(XN-I,rN. I 1)

Hdeto Hedge to
- aII I

S'I I /

" I /
\\~ I E/

- I ,'

" I
SWM _ N(. (2) S .N-1(4) XN-i

(a)
'.', VN -I (XN I ,IN_!-1

ct~ KN()CI1

\ [i

Z.! BN 1/

R R1 2 2[ 2

F i u r 626 + ~~~~~ l w h e K N 2 ( 1 ) b ( ) w i ( a) s n l

:'.~~~ bNli (1 ". (2){Z 2t~() I 3~( X.

.L i b) lill.hi
(303

"-. 22= R(1) b2(1) (A

• ' i- Figure 6.16: VN_(xNIrNI) whn ()>(i (3) with (a) single

minimum and (b) local minima as well.

• ...,.- -..-.. --. .-. . .303



When Figure 6.16(a) applies VN1 (xN_lrNl=) has a single

local minimum at XN~l=0, as in Case 1. But when Figure 6.16(b)

applies VN-1 (xN_,rNI=1) has two additional local minima as well

as the global minimum at XN l=O. In this situation V_(x ,r =1)N-1 'N-1 N-i' N-i-

is not montone for XN_< 0 and XNl > 0 (Note: in Figure 6.16(a)

S2 >Y 1but in Figure 6.16(b) we can have Y2I or yl>_Y2

The following proposition states necessary and sufficient condi-

tions for VN-1(xN_,rN =1) to have local minima (for the problem

of Section 6.5):

Proposition 6.11 (Local minima)

Consider the problem of Section 6.5. V N_1(XN_,rNI=1) has a

single local minimum at zero if and only if the following condition

holds:

K(2)-K (l) b2(1)
< Rl . (6.161)

(1) KN (2)

If (6.161) does not hold then V (x N,r =1) has two local

VN-l N-i N-i1

minima as well, at

XN_01  C& -

N- a(1) a (1) (6.162)
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7,

each with value VN O2 (1)
" vN1 a ' rN1l) = VN - ) rail)1 = 2(1).

(6.163)

The proof of this is straightforward, and appears in Appendix C.10. 0

This proposition can be explained as follows:

VN_1(xN_l,rN_I=1) has local minima if and only if the

following conditions both hold:

(1) K N (2) > K N (1) HY 3

(the costs are at "cross purposes")

and

(2) the control effectiveness

2b2(1) is small enough.
R(l)

Thus the form transition probability discontinuity locations,

+a, do not bear upon the existence of these local minima (and at

time k=N-1; a(l) does not effect them either).

Note that the condition (6.161) for local minima is the same

condition (6.157) for the optimal closed loop system to be less

stable than the open loop system (for some xN_1 values). In particular,

we can derive a relationship between the existence of local minima and
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the values of a(l) and at in terms of the joining points where the

slope of Vl (xl 1rN =1) decreases. Clearly the local minima

exist if and only if

1,R -mi-V<6 (2)N-1 a(l) N-1

mi , (3) (6.164)

%~- .. N- 7) N-i1

Thus they exist if and only if

a(i)S (2)> -
N-i

(6.165)
a(l)6 N- (3) < a

which means that the open loop drift a(l) would drive

x N-1 6 6N-1(2), XN-1 6 NX-1 (3

to the more costly sides of xN-C and xNaI respectively. But

(6.165) holds if and only if

2 A

+ ~ ~)(R R(1)+b (1)KN (1))
(1)(12+ A

which illustrates the a independence of the existence of these

local minima.
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We can extend these ideas to more general x-dependent

JLQ problems. A necessary condition for the existence of local

minima in V (x ,r =j) can be stated in terms of the conditional

expected cost-to-go Vk (xk+llrk=j) as follows:

Proposition 6.12: Consider the problem of Proposition 5.1, where

all of the x costs have only quadratic terms (i.e., S(j) = P(j) =

HT(j) = GT(J)=0, je M). If Vkl ( +lIrk=j) is monotonely nonincreasing

for xk+l < 0 and monotonely nondecreasing for x+i> 0, then

Vk(xkrk=j) has a single minimum.

Thus Vk+l rk=j) must be nonmonotone if Vk(xk,rk=j) has a local

minimum. This proposition follows direction from proposition 5.3 (part4).

Note that Proposition 6.12 does not provide necessary conditions for the

existence of additional local minima. For example, in case 2 problems where

2 K (2)-K (1)
b2(1) N N
R(l) - K() 2K N() N(2 )

we have V (x Ir =1) nonmonotone for x >0 and x <0 (as in FigureN N N-1 N N
6.8(b)) but, by Proposition 6.11, VN-1 (x N,rN1 =1) has a single

minimum at zero (as in Figure 6.16(a)).

This concludes our consideration of the last-stage solution for

the class of problems that are formulated in Section 6.5. We have

shown that
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1. With the exception of problems having am-0, there

are always regions of xN_1 values from which the

optimal controller hedges to a point.

2. The width of these hedging regions increases with

increasing

__ b (1) and A 1-K()

a(l) ' R(l) N N

3. Except when a=O, there are always regions of avoided

xN values. Each is associated with a joining

point where the slope of VN- 1 (x N-,rN1 =1) decreases
discontinuously.

4. The width of these regions of N avoidance increases

with increasing

ccb (1) and jK (1) -K (2)1
R() N N

5. When K(2)< (1) K (3) (Case 1), the optimalS. he KN ()<KN () N

closed loop system is more stable than the open

loop dynamics in form 1, for all xN_ 1.

A

6. When K (2)> K (1) iK (3) (Case 2), the optimal
N N N

closed loop system is less stable for some of the

x_ values from which the controller hedges to a

point if

(2)-N(l) b2(l)

KN(l)KN(2)
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7. This same condition is necessary and sufficient

for the existence of local minima in VNl (xN1 lrNll).

6.7 Summary

We have now characterized the time-varying and steady-state

behavior of the endpieces and middlepieces of the optimal JLQ controller

(when (6.1)-(6.4)) hold and we have obtained bounds on the expected

costs-to-go that afford some description between these pieces. For

a special class of problems we have explored all of the possible

behaviors of the last time stage solution and have given some indication

of the issues which arise at the next time stage.

In the next chapter we will examine further the two problem cases

of sections 6.5-6.6. Under certain conditions these problems have

easily computable solutions that will enable us to gain insight into the

general steady-state behavior of JLQ problems with x-dependent forms.

An algorithm for solving the general scalar JLQ problem of Chapter 5

will also be presented and illustrated by numerical examples. In addition,

we will consider "finite look-ahead" approximations of the optimal steady-

state controller.
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7. COMPUTATION AND TIME-VARYING BEHAVIOR OF
THE JLQ CONTROLLER

7.1 Introduction

In this chapter we conclude our examination of the noiseless,

scalar x-dependent JLQ control problem of chapters 5 and 6 with a

study of two topics in detail. These are

* the efficient computation of the optimal JLQ

controller of Proposition 5.1, using the qual-

itative and combinatoric results established in

chapters 5 and 6.

* the time varying behavior of the optimal controller

(as the number of stages from the terminal time

increases).

In section 7.2 we develop a solution algorithm for the general

problem of Proposition 5.1. It is presented in flowchart form and

described in detail. The basic idea is to compute the optimal cost

function Vk(xk,rk=j) at time stage k (and in each form j) one piece

at a time, starting on the left (with the left endpiece). Using

Propositions 5.2 and 5.3, the number of calculations and computations

that this solution algorithm must make is greatly reduced from those

of the "brute force" solution technique in chapter 5.

The solution algorithm developed in section 7.2 is applicable to

allproblems satisfying the requirements of Proposition 5.1. This
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class of problems is extremely rich. The resulting optimal controllers

can exhibit a wide variety of qualitative behaviors. Analytical char-

acterizations of these JLQ controllers that are sufficiently general to

encompass the entire problem class tend to be uninformative, since so

many diverse behaviors must be simultaneously accounted for.

We have chosen in sections 7.3-7.6 to focus on problems that

lend insight into the kinds of qualitative JLQ controller behaviors that

are appropriate in fault-tolerant control applications. Our vehicle for

doing this is the single form-transition problem that was developed in

sections 6.5 and 6.6. We are particularly interested in comparing and

contrasting the qualitative behaviors of the optimal JLQ controllers in

two archetypical classes of problems. In one of these classes the twin

goals of high performance and high reliability are commensurate. In the

other class they are at cross purposes.

In sections 7.3 and 7.4 we illustrate the wide range of parametrically

determined, qualitatively different cases that can arise even in the single

form-transition problem of section 6.5. In particular we find conditions

which imply that the middlepiece and/or endpieces of the optimal expected

cost-to-go Vk(Xk, vk=l) coincide with the upper and lower bounds of

chapter 6 (that is, they are described by the same function of Xk).

The facts established in sections 7.3 and 7.4 are used in sections

7.5 and 7.6 to obtain and study in detail classes of problems (mentioned

above) that are representative of .-ult-tolerant control problem applic

ations. For these problems the algorithm of section 7.2 reduces to the

solution of (increasingly many) sets of difference equations (as (N-k)
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increases). This makes these problems amenable to further detailed anal-

ysis and it lets us illustrate some of the controller properties and

qualitative issues that arise from the use of control to achieve both

reliability and performance goals. We can analyze the infinite time

horizon behavior of JLQ problems in these two classes and obtain the

optimal steady-state controllers as (N-k)-... since the optimal control-

ler at cach time can be obtained from che solution of increasingly many

difference equations without making the comparisons and tests in the

solution algorithm that are needed in general.

The steady-state solutions that are obtained for these two problem

classes exhibit a structure that suggests a "natural" approximation to

the steady-state optimal controller (both for these problems and the gener-

a! class of problems in chapter 5 that can be made arbitrarily close

to optimal. These approximations correspond to finite look-ahead con-

trollers which ignore eventualities that occur beyond some fixed plan-

ning time. By ignoring the far future optimality is lost in these con-

trollers but the computational burden of determining them and the com-

plexity and cost of implementing them is reduced. This approximation

idea is developed in section 7.7. Finally in section 7.8 we summarize

the results of Part III of the thesis.

7.2 An Algorithm for the Off-line Determination of the Optimal Controller

In this section we develop an algorithm that enables us to solve the

general scalar-x JLQ problem of Chapter 5. This algorithm is based upon
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application of the one-stage solution of Proposition 5.1 recursively, back-

wards in time, for each form jeM that the system can take.

The solution of Proposition 5.1 at a specific time k and from a

specific form j involves the computation and comparison of many quadrat-

ic cost functions. These cost functions correspond to single time steps

of constrained in x and unconstrained JLQ problems with x-independent

transition probabilities, as described in chapter 5. Fortunately many of

the candidate cost computations and comparisons that are indicated in the

constructive proof of Proposition 5.1 (in section 5.4) can be avoided, due

to the qualitative properties and facts that we have established in chape

ters 5 and 6. Our algorithm takes advantage of these results.

The basic ideas of the algorithm can be summarized as follows:

1. For each form jeM at time k, we can compute Vk(xk,rk = j) and

uk(xk,rk = j) one piece at a time, sweeping from left to right

along the axis of a(j)xk values. We start with the endpiece of

Vk(xk~rk =j) that cor)oesponds to large negative values of a(j)xk

(i.e., v'-xk, J) for a(j) > 0 and VRe (xk, j ) for a(j) < 0, since

we know that this endpiece is optimal for sufficiently negative

a(j)xk (from Proposition 6.1).

2. As we sweep rightwards along the a(j)x k axis, we compare the

solutions of each of the constrained-in-xk+l , x-independent JLQ

control problems of step 3 in section 5.4. The optimal cost

V (xk,r = j) at each xk value is the minimal value of these

constrained problem solutions, evaluated at X.k We will say

313



that a quadratic cost function is valid over a specific interval

of a(j)xk values if it solves a constrained problem of step 3

section 5.4 over this interval. That is

(t)tL kVkL is valid for <
k -k a(j)

VkU is valid for k < _-__

k a (T - k a(j)

VtR is valid for x > J(t)/a(j)
k k-k

Thus the list of valid costs changes as we sweep rightwards along

the a(j)x k axis. In each successive region of a(j)x k values we

need only look at those quadratic cost functions that are valid.

3. At each point we have a prevailing optimal cost which is the

optimal cost for points immediately to the left. As we

proceed from left to right along the a(j)x k axis we must

decide when this prevailing cost ceases to be optimal, and

which valid candidate cost-to-go function becomes the new prevailing

optimal. The old prevailing cost can cease to be optimal if it

is crossed by another valid candidate cost (which thereafter becomes

the prevailing optimal cost as we continue the rightward sweep

of the algorithm), or if it ceases to be valid. In the latter

case, the newly valid cost function (that replaces the former

S-- prevailing optimal cost function as the solution of one of the
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constrained JLQ problems of step 3 in section 5.4) becomes the

new prevailing cost. Thus, as we sweep rightwards along the axis

of a(j)xk values we only need to compare valid candidate cost

functions to the prevailing one.

4. Furthermore, from Propositions5.2 and 5.3 we know that not all

of the valid cost functions in a given region of a(j)xk values

are eligible for optimality. By eligible we mean that the

candidate cost function (of xk) in question has not been ruled

out by Proposition 5.2 (at the beginning) or by Proposition 5.3

(as the algorithm progresses). Recall that Proposition 5.2

disqualifies from optimality (for any xk) all candidate cost

t'
functions except the unconstrained vt( ,j) costs and thosek (k'j

constrained V L (xk,J),VR (xk, ) costs that correspond to

driving x to the less expensive side of a V (r = j)
k+l X+l k

discontinuity. Also recall that the mapping from xk to the

optimal choice of x

k H Xk+l(Xk'rk j )

is monotone (see Proposition 5.3). As we sweep from left to

right along the axis of a(j)xk values, this fact can also be used

to remove candidate cost functions from eligibility. We can

exclude from further consideration those candidate cost-to-go

functions that correspond to driving x to the left (in
k+l

a(j) > 0; to the right in a(j) < 0) of where the prevailing

controller does. In this way, Proposition 5.3 is used to reduce
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the list of eligible candidate cost functions as we sweep rightwards.

Thus the algorithm proceeds, for each form jeM and at each time k,

by sweeping rightwards along the a(j)xk axis, comparing valid, eligible

candidate cost functions to the prevailing one. This process begins

Re (Xk, i) ) if
with the appropriate endpiece (Vke if a(j) > 0, V(xk if

a(j) < 0) and ends when the other endpiece becomes the prevailing optimal.

If the problem is completely symmetric about zero (i.e., all costs and

form transition probabilities) then the sweep need only proceed until the

middle piece is reached.

~1
An overview of the solution algorithm is shown in figure 7.1. The

algorithm is initialized with the terminal time (k = N) cost parameter

(block 1). Then for successively decreasing times through k = k
0

U'I (block 2), the one-stage solution of Proposition 5.1 is obtained for

each form jeM (block 3).

The symbol := in figure 7.1 denotes replacement. For example,

j := 2j + i + 1 means that the value of variable j is replaced by

the value of the expression 2j + i + 1.
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Before discussion how the solution algorithm accomplishes this

determination of Vk(xk,rk=Jl, and (xk ,rk=j) let us recall the steps

for doing this that were specified in section 5.4. We will then

indicate how these tasks can be simplified. The steps in section 5.4

were:

Step 1: A composite partition of the real line (of x values) is
k+

obtained, consisting of

nonoverlapping intervals

+1 - k+l .,

.where y+l(0) = k+ k + 1 0

and the grid points ( t kl

This -is done by superimposing the grids of the next-time

expected costs-to-go V (x r = i) joining points

k+l %+l~ k+l

k+l :k,(-

and from the transition probability discontinuity locations

{vji(Z) : tJ. ,...,v.ji-1}
ji ji

for all i in the cover of j (i e C.)).

3)

Step 2: For each of these JP intervals (t=l,..., ,k ) ak+-l k+l

constrained-in JLQ problem is formulated:
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*~ ~ V(X krk=jl~l W4 (t min JUkR (j)

S +

x + 14 +1W(t) ~ l( k+1l k~j

Step 3: These constrained problems are then each solved. Their solutions

are piecewise-quadratic in x kwith three pieces

V(xkr ijjX e (t))= Vti X<
kk k k+l C+l1 k k -a (j)

teU (t)V k <Cx < k
kC-

a~j) a(j)

a (t)

V tR >k~ a (j)

except for t =1 and t = J which have only two pieces
k+1

(&k(l) /a (j) = ,O~~)/a(j) =+

Step 4: The optimal expected cost-to-go V (x , j) at each x.ki
kC kf k~i

the lowest of the constrained cost solutions (of steps)

at that x
k

A "brute force" implementation of step 4 would be to compute and find

S4(3~

the intersections of k+1 - 2) quadratic functions of k
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START
Block I iteration for time
stage It and form

PINITIALIZATION FOR
THIS ITERATION

OBTAIN THE x k. 'osaits partition

(Step 1 of section 5.4)

Superimpose the V ktl Ikt1 rk ij joining points

and form transition probability discontinuity locations

for ail forms iaC
obtaining

the number of pieces in the composite
k xklpartition

ivttt - grid points
fyktl - 1,.1 + J

9 L IS PROBLEM SYMMET RIC A 301?

1-41~4 :Yi J?

Figure 7.2: One Stage Solution Flowchart -Part II
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;-" rr -- ' - - . - ,-, - fl :"." " x-' <- "- - J -U.4*. - . f.~. . . - . .

Vk (Y14 j j' (xkj) (xkj) V

, ,U , k+l 1,R
--, k  (kJ k  (kJ), Vk  (x kJ) , Vk  (xkJ),

k+1 U

. ., Vk (X k j)

(7.1)

At each x value, Vk (xk rk=j) is then chosen to be the candiate having

the least cost, among those that are valid at this xk

Now we will develop a sequence of tasks that carries out these four

steps in a more efficient manner. In the following discussion we will

refer to a flowchart of the algorithm that is shown in figures 7.2 -7.6.

All of the steps indicated in this flowchart together constitute one

iteration of block 3 in figure 7.1. That is, they determine the one-

stage JLQ solution that is specified by Proposition 5.1 for some time

stage k and form j.

A macroscopic overview of the algorithm specified by figures 7.2 -

7.6 is as follows:

1. The algorithm first performs step 1 (above) in block 4 (of

figure 7.2). The composite x partition is obtained from quantities

that were computed at the previous time stage (i.e. at time k+l),

and from known parameters of the problem. If the entire problem is

symmetric about zero then we need only consider this partition for
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Obtain the "8 - partition of a(jJ x k values by

computing the grid points

by (C. 1. 4) - (c. 1. 5) and order them from
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2. The next task is to determine which candidate cost-to-go

functions are eligible for optimality with respect to Proposition 5.2,

and to compute the parameters for these eligible functions. Recall

that Proposition 5.2 excludes from eligibility all cost functions that

correspond to actively hedging to a point that is not a discontinuity

of the conditional expected cost-to-go Vk+l(x+i rk=j)"

In block 5 the parameters of Vk~l(xk+irk=j) are computed. Using

these quantities the parameters are computed for all candidate expected

cost-to-go functions that are eligible for optimality according to

Proposition 5.2. This is done in block 15, as follows:

for each xk+l interval (t) t = 1,...,
k+l l

we compute the parameters for the "unconstrained"

cost function V 'U  (block 3)

then at each grid point {y+(t) t =,. we

k+l k.+l

test to see if Vk+l(Xk+l lr=j) is discontinuous

(blocks 10,11,13). If Yi+l(t) is a discontinuous

point of the conditional expected cost-to-go, then the

parameters of the eligible candidate cost (corresponding

to driving to the low cost side of yk+l(t)) are

computed (blocks 12,14).

3. Then we prepare for the rightward sweep along the a(j)

axis by obtaining(in block 16 , figure 7.4) the partition of the real

line (of a(j)xk values) that is caused by the points
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['M G(t-1) t 2 ..

.8 t ,O . . . k.

k k k -

These quantities are computed using the values obtained

in block 7.

4. Finally, the algorithm determines the optimal cost (and

control law) over each interval of a(j)x values in this e - e
k

partition, starting on the left. The algorithm sequentially finds

2V (J:j) = x K (i:j) + x H (i:j) + G (i:j)
k k k kk k

for 1,2 ..... .,m(l) when a(j) > 0. When a(j) < 0 these pieces are

found in reverse order. The same flowchart applies for both a(j) > 0

and a(j) < 0 ; if a(j) < 0 then we start with the right endpiece instead of

the leftz endpiece as the initial prevailing cost function (block 19) ,

and we revise all indices at the end of the sweep (block 34).

The fourth task above constitutes the main body of the solution

algorithm. We will describe it in detail below. Before doing so,

however, let us consider the 8 - e partition that was obtained

for example 5.1 at time k = N-2. We will use this example throughout

this section to demonstrate the algorithm's steps.

Example 7.1 (example 5.1 0 6.1 revisited)

The candidate cost-to-go functions for VN2( XN 2 ,rN 2 = i) that are

valid and eligible at the start of the left-to-right sweep are shown

in figure 7.7. The seven rows correspond to the constrained-in-x_ 1

optimal costs
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l, = v ,U V a~ -V , ,I/n 1 , NI1 V o
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II I I 1 I I

-31.22 -30.98 -12.54 -4.56 -3277 0 3.277 4.56 12.54 30.98 3L22 o(l)XN.2

N.20 19 N-2(0) 8N-2( 4) 8N.2(5) ON-2(6) ON-( 7 )

ON-2(t) 8 N-20 ON..2(3) eN-2(4) *N-.( 5 ) (N-2( 6 )

Figure 7.7: Valid, Eligible Regions of VN_ 2 (XN_2 ,rN_2=) Candidate

Cost Functions in Example 5.1, 6.1
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VN_ 2 (CN2,rN_2_1 I XN_l e N-(t)

for t - 1,2,..,'Nl = 7. The regions of a(l)x values where the
N-1 N-2

various pieces of these V N 2 (XN_2=lKNl e ,_l(t)) costs-to-go are

valid are labelled between the arrows in this figure, and candidate

cost functions that are ineligible (due to Proposition 5.2) at the

start of the (j=l, k=N-2) alogorithm iteration are x'd out. Thus at

the start of the left-to-right sweep the eligible, valid candidate

cost-to-go functions for VN 2 (xN1 2 rN_2 =l) are as listed in table 7.1.

We now resume our description of the solution algorithm with a

detailed description of the left-to-right sweep. The list of initially

eligible candidate cost functions is determined in block 15, and is

updated in block 27 as each new piece of Vk(xk,rk = j) is determined.

In the leftmost interval of a(j)xk values (that is, at the start

of the left-to-right sweep), the valid and eligible candidate cost-to-

go functions are

for a(j) > 0

kl'U (xkj) and those

Vt j) t = 2,..., 1pJ that are eligible

k k k+l

according to Proposition 5.2 (block 15)

In this example, a(l) = 1.
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Candidate cost-to-go Region of a(l) x Eligible from
Functin forN-2Function for Values where Valid Proposition

vN-2 (XN5 2 r N - 2 -1 )  5.2 ?

V' 0N-2 (1)) yes

.-- v1,R
" (EN-2 ( I ) , no

V2 ,L (- N-2 (2)) no
2 ,U

(N (2), _ (2)) yes

V2 ,R (8N(2), o) no

V3L N2(3)) no

V3 (6 N-2 (3), 0N-2 ( 3 ) )  yes

V3 R N2(3) , no

V4 'L (- N-(4) yesN-2

6 v4,U (e_ 2 (4), _(4)) yes

V4 , R (N_(4) ) yes
N-2

V5 ,L (- 8 N-2 ()) no

V5 ' U ( (5), N_(5)) yes
N-2 -

V5 R N2 (5)) no

V6,L (- 8_2 (6)) no

v6'U (- (6), E) (6)) yes
56 ,R

VGN_ 2 (6), o) no

N- 2

V7"L (-6' , (7)) no

N-2

V7 , U (8N-2 (7) 2) yes
N4-2ye

i- Table 7.1 : Candidate cost-to-go Functions for VN_2 (XN_2 ,

Regions of Validity and Eligibility due to Proposition 5.2
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* for a(j) < 0:

"1' 4ik+l 'u

V (xk, j) and those
k

vR (xki) t 1,.., -1 that are

eligible according to Proposition 5.2.

From Proposition 6.1 we know that for sufficiently negative values

of a(j)x , the optimal candidate cost is
k.

Le lU
-.the left end piece Ve (xk,,J) V,U (xkj) if a(j) > 0

l "- ,U - -

. the right end piece Vk (xkJ)- Vk (Xk,) if

a(j) < 0.

This provides starting values for the algorithm. In blocks 17, 18

and 19 the first piece cost parameters Kk4 (l:j), Hk(l:j) and G (1:j)
k

are assigned the appropriate endpiece values, and the appropriate

current list of valid eligible candidates is designated. In block 20

the piece counter (m) is set to one and the control law parameters

for the first piece are assigned. The rightward search (along the

axis of a(j)xk values) for the pieces of the optimal cost function

Vk(xkrk = j) begins in this leftmost interval of the e - 0 partition,

as indicated in figure 7.5.

Either the prevailing optimal cost (the endpiece function) is
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optimal over this entire first interval of A(j)xk values or it is

crossed by one of the other valid eligible candidates.The intersections

of the prevailing optimal cost (at the start of the e - 9 partition

interval) with all other valid eligible candidate cost functions (in

this e - 9 interval) are computed in block 21. We then test (in block

22) to see if any of these intersections are inside the interval of

a(j)x k values that is under consideration. If the answer to this

question (block 22) is "no", then we know that the prevailing optimal

cost is optimal over the remainder of this 6- 0 partition interval, and

we proceed to the next interval (to the right).

If instead the answer in block 22 is "yes" then the leftmost of

these intersections determines the next joining point 63(m) of
k

Vk(xk, rk = j), as indicated in block 23.

The assignments of values for the next optimal piece of

V (xr = j) and u (x,r = j) in this "yes" case are made in

blocks 24, 25 and 26. If only one of the candidate cost functions

crosses the prevailing optimal cost function at 63 (m) then this cost
k

becomes the new prevailing optimal. If two or more of the

candidate costs intersect the prevailing optimal cost at 6 (W) then
k

we take as the next piece of Vk(xk, rk = j) the intersecting candidate

cost which corresponds to driving x
k+l

* the furthest to the right if a(j) > 0

* the furthest to the left if a(j) < 0.

This choice is made because we know from the monotonicity of the

1
An unlikely but possible occurrence
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optimal xk. xk+(xk,rk = j) mapping (in Proposition 5.3) that the

other costs intersecting at 6(m) can be optimal only at this single
k

intersecting point.

We can use this monotonicity (in block 27) to remove from further
1

consideration during the remainder of this leftward sweep all candidate

costs that drive Xk+ 1

* to the left (for a(j) > 0)

or
* to the right (for a(j) < 0)

of where the new prevailing optimal cost does. In particular, the

candidate cost that ceased to be optimal at 63 (m) cannot be optimal
k

again (as we move rightward along the a(j)x line).
k

This process is continued until V (x ,r = j) has been determined

over the entire interval in the e - 0 partition (that is, until

the answer to block 22's question is "no").

Then the next interval in the e - 0 partition of a(j)x values
k
2

(to the right) is considered. Because we have moved past one of the

{eJ(t), 0k(t-l)} values in entering this next interval, the set of
k k

valid candidate cost functions changes:

* if we have moved past a 63(t) value then Vt'L (x ,j) ceases
k k k

to be a valid cost; it is replaced by V' U (x j) in the
k k

list of valid costs

For a specific value of j at time k.

2 Or more than one if they have the same value.
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U'

if we have moved past a O(t) values then V

ceases to be a valid cost; it is replaced by

Vt, R

V. (Xk,j) in the list of valid costs.

This updating is done in block 30. These replacements may or

may not be eligible candidates for optimality with respect to the

criterion of Proposition 5.2 (block 15) and the monotonicity property of

the 1  x+l(x,.,rk = j) mapping of Proposition 5.3.

Once the new list of valid costs that are eligible for optimality

has been determined, the algorithm must check to see if the prevailing

optimal cost is still valid (block 31). If it is, then the procedure

described above is carried out for this new interval in the e - 0

proposition (starting in block 21).

If the prevailing optimal cost ceases to be valid in the new

e - 0 interval (that is, the answer in block 31 is "no") then the

next joining point, 63(m), of Vk(xkr = j) and uk(,r j)
k kxkrkj k~ k j)

corresponds to this 8 - 9 interval boundary (as in block 32). In

' this situation the replacement in block 29 of the former (now

invalid) prevailing cost becomes the new prevailing cost if it is

eligible , If this replacement cost is not eligible, then at least

. one of the other newly valid costs will be eligible. The newly

valid eligible cost that corresponds to driving X+l farthest to the

right (for a(j) > 0; to the left for a(j) < 0) is the new prevailing

optimal cost (see block 33).

* 1
Either the replacement of the now not valid former prevailing cost is
eligible for optimality (w.r.to Propositions 5.2 5.3) or another
eligible valid cost must intersect the former prevailing optimal cost

. at the left boundary of the new a(j)xkinterval, since Vk(xk,rk=j)
must be continous in xk(by Proposition 5.1).
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The algorithm proceeds through each interval in the e - 0 partition

until the last partition interval has been completed (block 28). Then

if a(j) < 0, the indexing of the solution parameters is reversed

(in block 34). This completes the one-stage solution (as in Prop. 5.1,

and block 3) for time stage k in form j.

Example 7.1 (= 5.1,6.1) continued

Let us now illustrate the algorithm for the k = N-2, j = I

iteration of example 5.1. Since a(l) = 1>0 (in block 17), the left-to-

right sweep of the algorithm begins with the left-endpiece cost function

ILe lU
VN-2 (1) = V initially prevailing, and the first 0-0 interval to be

considered is ( e (2)). The values of the first piece ofN-2
VN 2 ( ,1) and I2(XN_2,1) are assigned as specified by blocks 18

and 2C. We list below these assignments and all successive ones at

the left-to-right sweep progresses.

1. Searching interval (- ,8N(2) =-31.22)
N- 2

Eligible valid candidates: Vl'U, V4 'L

* 1lU initially prevailing since a(l) > 0 block 17

* KN-2 (lli) = K :U block 18

HN_2(l:l) : :N2:: ) block 1

(1:1= M block 19

FN 2 (1:1) - 0

If the problem is completely symmetric about zero, then the sweep can be
halted when the middle piece cost function becomes optimal.

L4
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prevailing cost function Vl 'q does not intersect. blocks 21,22

the (only) eligible valid candidate V4,L before

N-2

* move rightwards to (6N-2 (2), G-2 (i)) block 29

2. Searching interval (-31.22 = eN2 (2), 0 N2(1) = -30.98)

l,U 2,U 4,L block 30
Eligible valid candidates: V V V
2,U 2,L

(V replaces V as valid cost since we have

passed N_ (2) and it is eligible)
N2

Prevailing cost V lUis still valid block 31

Prevailing cost function V1 'U intersects V 2,1

X = -31.179, -7.847; intersections of V and
N-2

V 4 ,L were computed above
Since

-31.179 is inside the search interval block 22

we have

N-2(1) -31.179 block 23

and

V2, U  is the new prevailing cost block 24

Thus m =2 block 25

and

2,U

-N_2 (2:) = 'N-2 block 26

2,UHN-2(2:1) GN-2

GN_ (2:1) = 
2 ,U

N-2 G-2

L-2 N-2

336



1,R bok2
SRemove V1,U and V from future block 27

eligibility (due to Proposition 5.3)

3. Searching interval (-31.179 = N_(1), N_(1) = -30.98)
N-2 N-2

Eligible valid candidates remaining: V , V

. Prevailing cost V2,U does not intersect the (only) blocks

21.22
eligible valid candidate V inside the search

interval

move rightwards to (- (1), 0 (2) = N (3)) = block 29
N,-2 N-2 N-2

= (-30.98, -12.54)

4. Searching interval N-2 (1), 
0N-2(2) = 6N2 (3))= (-30.98, -12.54)

2,U 4,L

Eligible valid candidates: V2 'U, V4 ,L

1,R 1,U
(V replaces V in list of valid block 30

candidate costs since we have passed

EN)2(1), but Vl 'R is not eligible).

* prevailing cost V2 ,U is still valid block 31

2,UJ 4,L
intersections of V and V are blocks

known from above and they are not in 21,22

this interval

* move rightwards to (6 (3) = 0_(2), 0 (3)) = block 29
N-2 N-2 N-2

= (-12.54, -4.56)

5. Searching interval (0N2 (3) = 0N_(2), (3)) =(-12.54, -4.56)

V3,U V 4,L
Eligible candidates: V

(V2 ,R replaces V2 ,U and V3 ,U replaces block 30
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3,R
V since we have passed eN-2 (3) = 0N 2 (2)),

V3,U is eligible but v2,R is not, by

Proposition 5.2).

* The prevailing cost V 2Uis no longer valid, block 31

6N(2) N2 3 ) = G (2) = -12.54) block 32
N-2) N-2 N-2

* since

the old prevailing cost is replaced by block 33

V2 ,R which is not eligible,

V3 ,U is the new prevailing cost.

* Thus

m= 3 block 25

and

I_2 (3:1) = block 26

N 2 ( 3 : 1) = 0

G N2(3:1) 0

LN 2 (3:1) = 3,U

F (3:1) = 0
N-2

*2,UV is removed from future eligibility block 27

* The intersection of the new prevailing cost block 21

V3 ,U and the (only other) eligible valid cost

4,L
V are at

XN_ 2 - -6.977, -2,1417

* Since -6.977 is inside the search interval we

have

N-2(3) = -6.977 block 23
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and

V is the new prevailing cost block 24

* Thus

m=4 block 25

and

4,L'N-2 (
4 :l1) = -2' block 26

H (4:1) = H4 ,L
'N-2 N-2

G (4: 1) = G4 L
N4-2 N-2

LN-2(4:1) = L4 'L
14-2 N-2

F (4:1) = F4 'L
N4-2 N-2

3,U
* Remove V from future eligibility block 27

* The only valid eligible candidate cost in the blocks 21,

22
remainder of this search interval is the prevailing

cost V

* Move rightwards to search the interval

(6 (3), e (4)) block 29
N-2 N-2

6. Searching interval (6 (3),0 (4)) = (-4.56, -3.277)
N4-2 N4-2

4,L
Eligible valid candidates: V only block 30

3,R 3,U
(V replaces V since we have passed 6 (3),

N-2

but V3 ,R isn't eligible).

* Since only V 4Lis valid and eligible, blocks

30,31,21,
move rightwards to the interval (e (4),0). 22,29

N-2
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7. Searching interval (eN2 (4),0) = (-3.277, 0)

Eligible valid candiates: 
V4,U

4,U 4,L
(V replaces V as a valid candidate block 30

since we have passed N-2 (4), and V4 ' L is

eligible)

* The prevailing cost v4 ,Lis no longer valid, block 31

-2 (4)= N_2 (4) =-3.277 block 32

* Since V4'U is eligible it is the new prevailing

cost block 33

* Thus

m= 5 block 25

and

K-(5:1) = 4,U block 26
N-2 2N

II_ (5:1) = G (5:1) = 0
N-2 N-2

L (5:1) = L4 ,U
N-2 N-2

F (5;L) =0
N-2

* Remove V4 ,L from future eligibility block 27

* 4 ,U is the only eligible valid cost blocks 21,

22

* We are in the rightmost partition since block 28

this example is a symmetric problem

(see block 4)
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8. This completes the left-to-right search for

j=l, k=N-2. The optimal cost-to-go

VN_2 (xN 2 rN 2 = 1) and control law U. 2 (xN_2 ,rN_2 = r)

parameters have been determined for < 0 and can

be obtained for >-2 0 directly by synmetry. 0

The algorithm presented in this section computes, off-line, the

optimal control laws and expected cost-to-go parameters in each form

jeM and at each time, for the general class of finite time horizon JLQ

problems formulated in chapter 5. This algorithm can also be used to

obtain approximations of the optimal steady-state solutions of infinite

time horizon problems (provided such steady-state solutions exist) as

we will see in Section 7.7.

7.3 Quaittive Behavior of the Optimal Controller in the Single

A
Form-Transition Problem: VN_1(XN- lrN_2 = 1) Shaes_

Using the algorithm that was described in the previous section we

can compute the optimal controller for any JLQ problem (of chapter 5)

with form transition probabilities that are piecewise constant in x.

The remainder of this chapter contains a further examination of the

qualitative properties of these controllers.

The class of control problems that is solvable using the algorithm

of section 7.2 is extremely rich. A wide range of optimal controllers

exhibiting myriad possible qualitative behaviors can be obtained,

depending upon the choice of problem parameters. Some of these

controllers are relevant to fault-tolerant control applications and

some are not. Consequently, it is impossible to make further meaningful
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qualitative statements about the piecewise constant-in-x JLQ control

problem in general - there are just too many parametric cases to

account for.

We have chosen therefore to focus our attention in the remainder of

this chapter on subclasses of JLQ problems that enable us to gain

insight into the kinds of parametrically determined qualitative behaviors

that are appropriate to fault-tolerant controllers. In particular we

will study in further detail the single form-transition problem of

section 6.5 (i.e.:(6.88) - (6.93). This problem is a useful tool for

study because the iterative algorithm procedures of section 7.2 can be

described by recursive difference equations that are amenable to

1 

2
detailed analysis , but this problem is still sufficiently general to

expose the tradeoffs between controller performance and reliability

goals that are the essence of fault-tolerant control.

In this section we will examine the shape of the conditional

expected cost-to-go VNl(xllrN2-1) for the entire class of single

form transition problems. The purpose of this is to demonstrate

the tremendous diversity of VN-1 shapes (and hence the broad range

of optimal controllers) that can arise at k = N-2 in this problem,

leading to the wide variety of controllers as (N-k) increases. In later

sections we will examine certain subclasses of the single form-

transition problem that possess special structures that facilitate

analysis in greater detail.

Under certain reasonable assumptions about parameter values.

.'.34
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Recall that the single form-tgansition problem is as follows: we

have the systenm

xk+l = a(rk)xk + b(rk) u (7.2)

rk e (1,2 }

(1  if lxi < a

p(1,2:x) = (7.3)

(to if lxi > a

p(l,l:x) = 1 - p(l,2:x) p(2,l) = 0 p(2,2) = 1

where we wish to minimize
rain IN-12

mmNi 2 2 2
Uo...,UN 1  E l uk R(rk) + X k+l Q(rk+l)A + X2N K(r N) (7.4)

k= k
0

with the following finite parameters:

Q(l) > 0 Q(2) > 0 t > 0

0 < W <1 0 < 2 <i (7.5)

KT(j) > 0

R(j) > 0 j= 1,2

b(j) $ 0

a(j) > 0
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In sections 6.5 and 6.6 we solved for the last stage solution

V (I NIrN_=1) for all parametric cases of (7.2) - (7.5). We did

this by first examining the conditional expected cost-to-go VN (XNrNl=).

9-.;l

Recall that there are two parametric cases of interest:

Case 1: KN( 2 ) > KN(l) KN(3) (7.6)

Case 2: KN(2 ) > KN(l) H KN(3) (7.7)

Case 1 problems occur when

( 2W 1) [KT( 2 ) + Q(2) - (KT (1) + Q(1))] > 0 (7.8)

This situation arises when the system performance goals and reliability

goals are commensurate. For example, suppose that

* W2 > Wl the probability of the form change

is greater away from zero than

near it

X K(2) + Q(2) > K (1) + Q(1) the cost charged at time N is

greater in form 2 than in form 1

This would correspond to a system when entry into form 2 represents

the occurrence of a costly failure, with the probability of failure

p(l,2:x) increasing away from the regulator goal of x=0. The performance

2 2
goal (of keeping a weighted sum of N+ Nm1  a) is met by making

2 2
xN small without using too much control (i.e., without making uN_ too

large). This performance goal is consistent with keeping x small

o as to reduce the probability of failure.
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Case 1 problems also arise when

W1 >W2

*K (2) + Q(2) < K (1) + Q(l)T T

Here the transition to form 2 results in a lower cost charged at time N

and the probability of making this desirable transition is greater near

2
zero than away from it. So again, the performance goal (keeping

small with small 2 ) and the reliability goal (increasing the prob-
'N-1

ability of the favorable transition) are commensurate.

* Case 1 problems possess a conditional expected cost-to-go

VN (xN Ir l=1) at time k =N like that of figure 7.8 ka). The

conditional cost is discontinuous at xN= ±a~ and the "good" (low cost)

sides of these discontinuities are the sides nearer zero.

Case 2 problems occur when

(1 W2~ KT%(2) + Q (2) - (YT 1(1) (1)] > 0 (7.9)

This situation arises when the system performance goals and reliability

goals are conflicting. That is, the best stratecy to reduce the

2 2
instantaneous cost (a weighted sum of x.~+ tN is at cross-purposes

with reducing the probability of being in the more costly form at time N.

* Case 2 problems occur when either

Wi > W

K (2) + Q( 2 ) > K (1) + QM1
7%T T

or

2 1

KT(l) + Q(1)> K T(2) + Q (2)
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VNy(xNI rry., 31)

CASE I

-a a

A
VN(XN IrN.lI

I CASE 2

XN

A A A A
Figure 7.8: V N(x ir-- 1) when (a) K N(1) =K N(3)> K,(2) (case 1)

A
and when (b) KN(2) > K (3) =KN(1) (Case 2).
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They have a conditional expected cost-to-go VN (xNIrN_=1) like that

6g shown in figure 7.8(b). This conditional cost is discontinuous at

x = -a but the "good" sides of the discontinuities are away from

zero.

As shown in section 6.6, there are three possible shapes for the

optimal expected cost-to-go VN_I (xNl,rNl=l) . These are repeated here

in figure 7.9. For Case 1 problems, VN_(xN lrNI=1) has a single

minimum at zero (shown in figure 7.9(a)). For Case 2 problems

VI NoN =1) can have two additional local minima at XN_ = ±W/a(l)

if and only if

b2 (1) KN(2) K KN(l) (.0

R l) (7.10)

KN(l) KN(2)

Each of these three VNI (x N,r N_=1) shapes can lead to several different

shapes of the next stage conditional expected cost-to-go,

VN_(xN IrN 2l), depending upon the ordering of the grid points in

the composite partition of xN-1 (that is, depending on the relative

values of ±c, Nl(I), 6N_(2), N_(3) and N_(4)).
N-i N-1 N-i N-i

Each of the different shapes of the conditional expected cost-to-go

VNl(xN- l l rN 2
= 1) will in turn result in one (or more) qualitatively

different shapes for the optimal expected cost-to-go at time k = N-2,

VN_2 (xN-2 ,rN _2 =l). This diversity of possible controllers increases

geometrically as(N-k) increases even for the relatively simple problem

(7.2) - (7.5). It is this diversity of parametric cases that makes it

difficult to make further descriptive qualitative statements about optimal

JLQ controllers that have generality (even though we can solve for the

controller in each specific case via section 7.2).
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Let us now consider the possible shapes of the next stage

conditional expected cost-to-go VN- (XNi rN- 2=1). Recall that

V (x rN 1) is a piecewise-quadratic function of XNl:
N-i N-1 rN-20i)l

2A

V 2 i ^ +
N-i N-l'rN_2=) XN 1  N- ( i )  XN_ 1 N'i(i) + GN-l(i)

for XNI e "Nl(i) (7.1

i = I,..., -

where the regions { (i) } of xN_ 1 values in (7.21) are those

specified by the composite partition in step 1 of section 5.4. This

partition (as described in section 5.4) is constructed by super-

imposing the grids due to the joining points {5N- (i):i = 1,2,3,4)}of

VN l(Xl,r. 1=),and the form transition probability discontinuities

{V1 2 (1) = -a , v1 2 (2) = a} . The number of regions of XN_ values

induced by this partition is N- = 7, except for the degenerate cases

''* of Nl(1) = -a or 5N_1(2) = -a • There are three different non-
*N-i -

degenerate situations that can occur, as listed in table 7.2.

YN_(1) < YN_(2) y Nl(3) y N_(4) < yN_(5) < _YNI(6)

(2) (N3()) -_ () -] N ( (4)

N-1 N1 N-1N-1(2) 6N -1 (i) -6 N -1 (2) 6 N -1 (3) N -1 (4)

(3) -a 6N-i (1) 6Nl (2) N (3) (4) (

Table 7.2 Nondegenerate Partitions of x Values

N-1
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The value of the open loop dynamics (A(i) in form 1 determines

which of the situations in table 7.2 applies. From the equations for the

_,1 (i) we obtain the following directly:

For case 1 problems (where KN( 2)< K N WE K(3)

(1)0n4 a(1) < 1 R(- KN( 2) (7.12)

F2(1(l) + b (1)
(3) #a(1) > 2 + R (1)

R (1) + b (1) ,()

(7.13)

with (2) in table 7.2 corresponding to case 1 problems with a(l)

between the two values in (7.12) - (7.13).

For case 2 problems (where K1(2 ) > KN(l) E KN(3)

b'(1) KN(2) R(1)+b (1) (l)"i[. (1) 06- a (1) < (1 +1- l-b ^

R(l) / R(1) + b (1) K^N( 2 )

(7.14)

2
(3)V a(l)> 1 + i KN(l) (7.15)R(1)

with (2) in table 7.2 corresponding to case 2 problems with a(l)

between the two values in (7.14) - (7.15).

From the above we see that the partition ordering (in table 7.2) is a

stability-related property by the form 1 op&n loop dynamics:
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for case 1 problems, all open loop stable systems in form 1

(i.e. a(l) < 1) satisfy (1) in table 7.2 (as do some not-too

unstable open loop systems). Only unstable a(l) can yield

situations (2) and (3).

for case 2 problems, only open loop unstable systems in form 1

satisfy (3) in table 7.2. If there are local minima for

VN-1 (_IrNl=), which occurs if and only if (7.10) holds,

then all open loop stable (a(l) < 1) systems satisfy situation

(1) in table 7.2. Since the right-hand side of (7.14) is less

one if, and only if (7.10). holds, we have that if there are

no local minima in VN(xN,rN=1) (except for the global
N-l xN-l rN-l~l

minimum at xN0l=0) then only unstable a(l) yield situation
N" .

(2) in table 7.2.

We have now characterized the different x-1 partitions that can arise in

step 1 of section 5.4 (and block 4 of the algorithm of section 7.2) at

time k = N-1. In section 6.6 we saw now how the shape of the conditional

expected cost-to-go V(xNirNl1=1) was directly related to the qualitative

properties VN lr ). Similarly the shape of VNl (x._lrN 2 =l)prpetis NC_l,r N-1 1 11N-)

is intimately tied to the qualitative properties of the next stage

solution, VN_2 (xN_ 2 rN-2=l). The number of qualitatively different

shapes of VN_l(xN_lIrN_2=I) that can arise for the single form-transition

problem (and lead to significantly different optimal controller properties)

is large. To demonstrate this we illustrate in figures 7.10 - 7.12 the

A
six different basic shapes that VN-1 (xNlI rN- 2 =l) can take for case 1

351



problems (even more shapes arise for case 2 problems). Depending upon

(W,{K (tl) +the relative values of the problem parameters wl , 2' N-I

Q(1) t=l,...,mN l(S} and %-I(1: 2) + Q(2), the conditional expected

cost-to-go VN- (x NIr N_=1) can be monotone nonincreasing for XN_1 < 0,

or not, for each of the composite partition situations (1) - (3) listed
C.-

in table 7.2.

In this section we have indicated how, in only two time steps, the

number of parametrically determined, qualitatively different optimal

JLQ controllers becomes large for the relatively simple single form-

transition problem. In the remainder of this chapter we will obtain

parametric conditions on (7.2) - (7.5) that specify particular sub-

classes of the JLQ problem which possess special structures in the

composite partition of x (at each time k) and thus in the optimal

controller as well.

IThe existence of local minima makes case 2 problems more complicated.
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A

I VN.-(XN-1I rN- 2 = t)

slope
decreases

here

: KN-1I(3) >KNAt(4)I

8NSWIM BN-1(2) -CE SWI BN13 N-1(4) XN-1

(a)

A
VN.I (XN1f rN_ 2 - )

Ly 1,'-N-t (31< KN-t (4)
i Yt

slope decreases
here

II I ,
-Na () BN .1(2) a SN113) BN 1(4) XN -1

(b)

Figure 7.10: Possible VN_(xNlIrN 2 =l) Shapes for Case 1 in

Situation 1 of Table 7.2. In (b) we can have

y l <y2 <y 3, y 2 <yl<y 3 or y<y
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A
/.-c.Z^ 2K() O ^  (3 tVN_(XN_1 I rN_ 2 = 11
a' K ([2) K (3)

- ll2) 18- N -1(31)

slope decreases
here

BN (1) c BN (?2) 8 N-.1(3 a 8N_(4) XN - I

(a)

A
VN(x- -

VNIXNI rN_2 = 1]

We may have any of the followino:

1
^  

<z KNI(31k Y3 <y 1 <YI<Y 2

aN1121) ( +(N2)i3)

A N-1 AN"-1 y 3 y y 4Y3:5 y3 < Y2 -5 Y4
Y 1_5Y 3 <Y2:5 Y4

Y 1<: Y3 < Y4<5 Y2

y
Y slope decreases

Y, Y3 here

i i I -- - - i i
8 N-1(1-€ N- 2  BN-II1(3 )  N-(4 )  XN-1

(b)
AFigure 7.11: Possible VN_ (x N-1IrN -21) Shaves for Case 1 in

situation 2 of table 7.2.

.J3
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A

slope decreases7here

0 8~II)BN1() N-i(3) BN-1(4) a XN-1

(a)

V N1 ( N-1 rN-2+ 1)

Vemay have:

K N-I(1) K N- (2)y 1 <y 3 y2:S

y3 1 < 35 2

slope
decreases

here 0*

y 3

0SWNIMI SWIM(2 311-10) BN.1(4 ) x XN-

AI.Figure 7.12: Possible V (x Ir -1.) Shapes for Case 1 in

Situation (3) of Table 7.2
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* .7.4 Qualitative Behavior of the Optimal Controller in the Single

Form-Transition Problem: Bounds, .Endpieces: and Middlepiece

In this section we identify certain conditions on the parameters

of the single form-transition problem (7.2) - (7.5) which yield

example problems that have a fairly simple structure (so as to be

amenable to detailed analysis) but are still sufficiently general to

expose the tradeoffs between the reliability and performance goals of

fault-tolerance controllers.

In chapter 6 we established certain facts about the optimal expected

cost-to-go Vk(Xkrkl), as k decreases from N. These included the

following:

(1) The endpieces of Vk(xk,rk=l)' valid for extremely negative

and positive values of xk , are described by the same finite

positive quadratic cost function e k VRe

of x, given by(6.99) - (6.104). They are the same

functions due to the symmetry (about 0) of the problem.

The endpiece cost function converges as (N-k) increases,

to the steady-state endpiece cost function specified by

Re LeK% (1) K (1) in (6.106).

(2) The switching region S3 (between the endpieces) has

finite width at each time k, but as (N-k) 4 this

width grows without bound (Proposition 6.3).
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(3) The expected cost-to-go Vk(xrk 1 1) has a single middle-

piece cost function, given by (6.99), (6.102), (6.105).

This finite positive quadratic function of X converges to

the steady-state middlepiece cost function specified by

RM LM
K. (1) K.(1) in (6.107).

(4) Vk(xk,rk = 1) lies between the upper bound function

vUB LB
(x.l) and lower bound function Vi (xk,) that are

specified in Proposition 6.7, at each value of x. These

bounds are quadratic (not piecewise quadratic) functions

of x. As (N-k) -1 , these bounds converge to the steady-
state bounds rUB(x,1) and B(x,l) given in (6.86)-(6.87)1

Now what else can we say, in general, about the qualitative properties

of the optimal controller for the single form-transition problem?

Let us restrict our attention to single form-transition problems

(7.2) - (7.5) where, at each time k , the sum of the xk cost andLk
the expected cost-to-go from xk is higher in form rk = 2 than it is

in form rk = 1. This situation is what we expect to occur when

r - 2 denotes operation in a failed or degraded mode. Thus we are

focusing here on single form-transition JLQ problems that are

appropriate representations for fault-tolerant control applications.

The following conditions ensure this situation:

Since a(l) > 0, by Proposition 6.7.
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Fact 7.1: For the single form-transition JLQ control problem of

(7.2) - (7.5) if

Q() < Q(2) same or greater x-cost (7.16)

,-(l) < KT(2) charged in form 2 than in form 1 (7.171

0 < a(l) < a(2) form 2 not more stable than form 1 (7.181

a (1) "tb2( 1 ) / R ( ) ]

< ratio of control effectiveness
2 - 2

a (2) [b (2)/R(2) ]
in form 1 to form 2 is greater than

(or equal to) square of ratio of

open loop dynamics (7.19)

then at each time k = N, N-1, N-2,...,k +1 we have
- - 0

2 / Q(2) /Q(2) Q()x2Q()(X) (XUxB r )

(Vk(xk,r =2)) (1:2) '1) Vj UB,

(7.20)

Proof: Conditions (7.16)- (7.17) guarantee that (7.20) holds at time

k - N. The additional conditions (7.18)- (7.19)and direct substitution

for V ( r 1) and Vk(xtk-2) from (6.74), (6.86), (6.78) - (6.79)

and (6.94), (6.96) yield an inductive proof of (7.20)-as k decreases. 0

Thus, when (7.16)-(7.19) hold then the x-cost and cost-to-go in

the failure mode r = 2 are greater than (or equal to) that in the normal

form r = 1, at every time k. Condition (7.16) and (7.17) are obviously

appropriate if form r-2 is a failure mode of operation, and (7.18) is not
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unreasonable. Condition (7.19) is not excessively restrictive. It

says that for the problem (7.2) - (7.5) to have structure (7.20) we

must have

2 2open loop squared dynamics ratio a (1)/a (2) small enough

(failure Mode not too stable relative to normal operation)

* energy cost ratio R(2)/R(l) large enough (cost of energy in

failure Mode not too low - in normal made,,not too high)

2 2* actuator gain squared ratio b (1)/b (2) large enough

(actuator gain large enough in normal operation and not too

large after failure).

Note by (7.18) that (7.20) is satisfied if

22 (2)
b >(1) > 2(7.21)

R(1) R(2)

We will now further restrict our attention to problems where the

functions Vk(xk,r -2), LM(xk,r i kMk,rk-1) and Vkxkrk=l) -

Vk(xk rk=l) t'k rk kl)1R

vke (xk.,r =1) all increase monotonically as (N-K) increases. Thisk

restriction(which is made for analytical convenience), is characterized

by the following:

Fact 7.2: For the single form-transition JLQ control problem of

(7.2) - (7.5), with conditions (7.16) - (7.19) of Fact 7.1 holding,

(1) k(1:2) (hence Vk(xk,rk=2) for each x.) increase monotonically

as (N-K) increases if and only if
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R(2) [a 2(2) -1] IR(2) [a 2(2) - 2
r I 2

O<K T (2) < + +4b2 (2) a2 (2) R (2) Q(2)-b (2) Q(2) \-b2 (2) Q(2)

22b (2)
(7.22)

2) If, in addition to (7.22) condition (7.23) below is true for

i = 1, then the middlepiece parameter KM (i) E K (1) (and

hence VLM(xk,1) for each xk) increases monotonically as N-k

increases.

3) If, in addition to (7.22) condition (7.23) below is true for

2, then the endpiece parameters e(1) - k (1) (and hence

VLe(x1) and e k' (Xkr for each xk ) increase monotonically

as N-k) increases:

*2 0 < (l) <

4-{R(1) (1-a2(1) (-wi + b2(1) [Q() + Wi(K(2) + Q(2) - Q(1))]}

2 2QlfJ+ {R(l)(1-a (1)(l-Wi)) + b (1)[Q(1) +Wi((2) + Q(2) - 2

2 2+ 4a (1) R(1) b (1) (1-W.) [Q(1) + Wi (Kr (2) + Q(2) - Q(1)]

2b 2 (1) (1-Wi) (7.23) a
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condition (1) says that K (:2) decreases as (N-k) increases

if the terminal cost KT(2) is not too large. Conditions (2) and

(3) require that terminal cost K (1) is not too large. In particular,
T

Fact 7.2 holds if KT(l) = KT(2) = 0.

The proof of Fact 7.2 is by induction. It involves straightforward

but tedious algebraic manipulations that are detailed in Appendix C.11.

The parameter restrictions of Facts 7.1 and 7.2 also guarantee

the following strong relationship between the functions (of xk) that

describe the middlepiece, endpiece and bounds of Vk(x ,r
Vk k'k

Fact 7.3: For the single form-transition JLQ control problem

(7.2) - (7.5) with parameter values satisfying conditions

of Fact 7.1 we have the following:

(1) If

w2 
> W1 (7.24)

(that is, the "failure probability" p(l,2:x) is

higher away from x - 0 than near it) then at all times

k N, N-1, N-2,....

Thendpieces (1), ke( 1) and upper bound

VLk(l) of Vk(xklrk = 1) are given by the same

Le Re UB
function of xk (that is, Ke (1) = Ke(1) = (1)
for all k)
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and

the middlepiece and V"N(l) E RR(1) and lower boundk k

VLk(l) of V (xk,r 1) are given by the same function
kc k()k

LM RM LB
of xk (that is, K.K(l) .(l) = (1)for all k).

(2) If

1i >W 2  
(7.25)

(that is, the "failure probability" p(l,2:x) is higher

near x = 0 than away from it) then at all times

k = N, N-1, N-2,.,..

the endpiece s i)() and lower bound

k k o1) Vk(xk rk  are given by the same

function of xk (that is, Le(1) = (1) = (1)

and

. the middlepiece VLM(i) - VRc (1) and upper bound

UB
k" V (xkr = 1) are given by the same1. Vk ki of (k

LM MU
function of xk (that is, K (1) KB

The proof of this fact is a straightforward induction, given in

Appendix C 12.
0
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The two cases of p(1,2:x) in (7.24) - (7.25) are shown in

figure 6.6. The general shapes of Vk(xk,rk = 1) that result from these

(at any k) are illustrated in figure 7.13. Note that (7.11) and figure

7.13(a) correspond to problems where the twin goals of system performance and

reliability are commensurate; driving x toward zero reduces the

operating cost &t k and keeps the probability of failure small. Thus

far from zero Vkx(,rk l) is coincident with its upper bound, and near

x = 0 the lower bound function is reached since both goals are being met.

Figure 7.13(b) and (7.25) pertain to fault-tolerant: Kontrol problems

where these goals are contradictory; driving x towards zero (inside of

(-c,a) reduces the operating cost but increases the probability of failure.

Therefore, near zero Vk(\,rk'l) is equal to its upper bound, since the

probability of failure (and higher cost, by Fact 7.1) is high; far from

zero, Vk(xkrk.l) is equal to its lower bound since the risk of failure

is kept small.

In this section we have specified certain parametric restrictions

(i.e. (7.16) - (7.19), (7.22) - (7.23) for which the single form-

transition problem (7.2) - (7.5) has a simplified solution structure.

This reduced class is rich enough to include problems with conflicting

control goals and some with conmensurate ones, however. These two cases

will be studied in greater detail in the next two sections.
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Vk("krk- 1)

upper bound V ItUSN,I)
and endpiece function

tower bound V ~ e NA) ~ '( Vk'
and

niddlepiece function

VLM~x II-VRMxk,kIt ' k, kt /I~

/ I

/X

(a)

lower bound V 5It k,

andc

uppe~c function

upr bound VkS1
uprband i

middlepec. function
Cm~dd(.,n

jI'

-X

Figure___ 7.3 k ~r~ k 1) structure when raCtS 7.1,7.2 hold for

(a) w2> 1 (coumensurate goals) and (b)wl> W2

(conflicting qroals).-
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7.5 Active Hedging When Reliability and Performance Goals are Commensurate

As we have discussed previously, the optimal JLQ controllers for

problems having x-dependent form processes (which are the subject of

chapters 5-7) are qualitatively different from the JLQ controllers for

Markovian form systems (as in chapter 3), in that they can use the control

to change the probabilities of form transitions. That is, they actively

(1)
hedge In this section we will study this active hedging behavior for

a class of JLQ problems with x-dependent form transitions where the system

reliability and performance goals are commensurate. Our purpose here is

to illustrate how the optimal controller uses active hedging to achieve

fault tolerance.In the next section we will consider the use of active

hedging when the system performance and reliability goals are at cross-

purposes.

We will consider here the "case I" single form-transition problem of

the last section, as (N-k) increases. Under certain additional para-

metric conditions (that are derived here), the optimal JLQ controller

at all times k = N, N-l,...,k can be specified by recursive difference0

equatiqns that is, Vk(xk,rk=l) and uk(xk,rk=l) can be obtained without

performing the various comparisons and tests of the general solution

algorithmthat is flowcharted in section 7.2. In this section we

will discuss the optimal steady-state controller for this example,

as (N-k) approaches infinity.

The discussion here will be carried out primarily via figures. A

detailed technical developmentparalleling this section is contained in

appendices C.13 and C.14.

In the terminology of chapter 1.
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Let us consider the scalar, single form-transition problem (7.2)-(7.5)

where Facts 7.1, 7.2 and 7.3(1) hold. We also assume that (7.12) holds.
+

That is, -O are the grid points of the xN_1 composite partition that

are closest to zero. In figure 7.14 we collect (for convenience) the
A

curves VN(xN rN -) ' N (xN  r N- 1 )'VN- (xN- 1'r - 1--) and ^VN_ XN_r N-2 -)

for this problem.

Let us consider now the candidate cost-to-go functions (of XN 2 ) that
(1)

are eligible for V (x ,r 12). In figure 7.15 we show the candi
N-2 N-2' N-2=

date functions V-t (i=l,...,7). Recall that these functions of x
N-2 2- (2)

coincide with solutions of the constrained (in xNl) problems (

uin {VN 2 (xN 2 rN2=l)}
uN-2 N2N2 -

s.t.

SXN A W U(i)-i), Y )

for those XN-2 values where the resulting value of XN-1 is in the interior

of AN-1 (i).

The following relationships that are pictured in figure 7.15 are

verified in appendix C.13:

4,U < 3,U _ 5,U < lU _7= U at all x
N-2 N-2 N-2 N-2 N-2 N-2 (7.26)

2,0U> 3,02,U 3,U for all x except equality at x = _(3)/a(l).
VN2'N-2 N-2 N-2 N-2

(7.27)

6,U >5,U 6/1.
V 6 > VN_2  for all x except equality at x N(2 (N-2 1).

(7.28)

In addition to the seven candidate cost functions that are shown in fiq7 . 1 ,

(1) In the sense of section 7.2

(2)AA
Here yN-l(0) -( and Y (7)

* 366



I 
I

V141) 111- 2 .

III 
I

Ii I:' .
l

4

1 2"
-4

low-

ll l. ,81 l. : I) ll.l l . at l l . 1 : l}"

KI I I I- I I- I~ l, .II 3I,

jai al) 1

Facts 7.1, 7.2 and 7.3(1) Hold: (a)VN( gqli

VN IXI I r

)V (x Ir -,=1) V N-i
(b) NN N , (c) ( rl=1)and (d)

A
-i(x N1lrN=12;) when (7.12) Holds
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Figure 7.15: The Candidate Cost-To-Go Functions Vi (i=1,2,. .,7).
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there are two other eligible candidate functions for VN_2(_2,N2=1).

These are those "constrained"functions which, according to Prop. 5.2

(and block 15 of the algorithm of section 7.2), correspond to hedging to

the lower cost side of a VN-1 (x,_Ir,_2=l) discontinuity; that is, driving
+

to XN_ = -' or XN_ 1 = a (see figure 7.14(d)). These candidate cost

functions are:

4,L +VN2 (x_ 2 ,rN 2 =l) driving xN 1 to -a

(left boundary of "_i(4))

4N, R

R (X 2 r =1)
N-2 N-2'N-2 driving x to a-N-l

(right boundary of N-1 (4)). -"

Th armtrso 4 ,L an 4,R
The parameters of 4,L and 42 are listed in appendix C.13.

If we superimpose the curves of V4 ' L and V4 ' R on figure 7.15 andN-2 N-2
(2)

compare the regions of xN-2 - validity of each curve , then we can

obtain the optimal expected cost-to-go

V N 2 (xN 2 r N-2 =) =min min{VN-2 (XN- 2 r N-2= 1)}

N-2

S.t.

-- 4,L 4,R
(see chapter 5) for each value of X2" However V4, and VN_2

'N2 -2 N-2

(1).Corresponding to driving x to one of the boundary points
(6) of the composite partition intervals

A N-1 6N .. -1 (7) .

(2).(2) As in section 7.2
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can be in three different graphical positions relative to 
the Vi 'u

N-2

depending upon the values of the problem parameters. We will examine each

of these three possibilities and analyze the relationships between the

qualitative properties of the optimal controllers which they specify and

the problem parameters.

We first note that, by definition:

v4 L > V except equality at x- = N-(4)/a(l)N-2 N-2 -2 N-2

(7.29)
4,R 4,U-2 > VN-2 except equality at x N =G N2(4)/a(l).

(7.30)

NowVN-2 x2I) is the middlepiece cost function for VN_2(xN_2,rN-2-1)

thus as we have shown it is also a lower bound for this problem. (1)
4,U

Consequently -VN2 must be optimal over its entire valid domain; that is

.- 4,U
VN-2(xN-2'rN-21) v4-2

6N-2 (4) __ 2 (4)
for a(1) - XN-2 a (1) (7.31)

From Proposition 6.1 we know that the optimal expected cost-to-go

VN_2 (x_ 2 ,rN 2 -) coincides with the endpiece cost function VN' for
VN-2(N-2 --1) N-27,U

-~2 negative enough, and it coincides with VN2 for xN 2 large enough

We also know (from Proposition 5.1) that VN 2 (XN 2 rN 2 I) is con-

tinuous in XN_ 2.

(i)See Fact 7.3
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Refer now to figure 7.15. Considering the optimality of V1 'U  forN-2

XN2 sufficiently negative, of V4,U for 2near zero, and of V7,U forN-2

XN-2 sufficiently large and bearing in mind the required monotomicitv
1

of the optimal mapping

-?N-2 'N-I (-N-2' r N-2=1),
the remaining question that must be resolved so as to find V _(X rNl)

N-2 N-2, N -
for this problem is the following: how does VN_2(xN_ 2 ,rN- 2=l) "get from"

l ,U 4,UJ
the VN_ 2 curve to the VN2 curve as X increases (and from V4,U toN-2 N-2
7,U.VN 2) ?

The three possible situations that can occur, depending upon the

values of the problem parameters, are shown in figures 7.16 - 7.18 and

are sununarized in table 7.3. Complete details for each case appear

in appendix C.13.

The first situation (shown in figure 7.16) results in V N2(xN -2 ,rN -2= I)

2 -having mN. 2 (l) - 9 pieces Each piece corresponds to a different

active hedging strategy using UN- 2 and UNl. In the endpieces VN 2 (1:1)
VN-2 (9:1) the controller does not use controls uN-2,UN-1 to change

the p(l,2:x) piece that the x process is in. In the middleDiece

VN-2 (4:1) we have IXN << . The left and right switching
regions (S-, and SIR of x values are divided into three parts:

-N-2 N-2 N-

0 intervals of xN-2 values where immediate hedging-to-a-point

(1) From Proposition 5.3 we know that this mapping is always monotone

(2) This is the upperbound on mN-2(1) , according to Proposition 5.4
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+ = t with(to XN_ 1 = -L with cost VN_ 2 (4:l)or to X-21

cost V (6:1)) using UN 2 is optimal
N-2N

a intervals of X 2 values where the optimal strategy

uses control u to hedqe-to-a-point (toN-1
+- & with cost V (2:1) or xN = " with cost

N-2

V (8 :1)),
N-2

0 intervals of values where x and x are in

X-2Nl1 N

different p(l,2:x) pieces but hedging-to-a-point is not

used; (V (3: 1 ), V (7:1) are the optimal costs here).
7 VN-2 'N-2

The second situation (shown in figure 7.17) results in VN- 2 (xN- 2 ,rN- 2 "0)

having only 'N- 2(1) = 7 pieces. Unlike the first situation of figure 7.16,

there are no x values from which the optimal controller causes xN_ 1

and xN to be in different p(l,2:x) pieces without using hedging-to-a-mN

I. ,L 1,R e
point. Here the switching regions ( ' S N_ ) are each divided into two

U2 N-2

parts:

0 intervals of X- 2 where immediate hedging-to-a-point

(to XNl = -a with cost V_(3:1) or to X t
cs N-2 ort N-1 (

with cost VN 2 (5:1)) using UN 2 is optimal

intervals of XN_2 values where the optimal strategy

keeps -i in the same p(l,2:x) piece as XN 2 , but

then uses control uNi to hedge-to-a-point (to = -+
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Figure 7.16: VN-(x-2r N--1) in the first situation. The optimal

-~ is indicated by the heavier line. The resulting

*optimal values of x N and xN-1 for each of the 9 oieces

o N-2 (xN-2' r N-21) are also indicated; V N-2 (t:l)

denotes the tth piece (from the left) of VN 2 (xN_,rN2 =l)
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Figure 7.17: VN_2(xN_2 ,rN_2=) in the second situation. The optimal

is indicated by the heavier line. The resulting optimal

values of xN and XN~ifor each of the 7 pieces of

V_ 2 (xN_ 2 ,rN 2 ) are also labelled.
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is indicated by the heavier line. The resulting

optimal values of *N and xN_1 for each of the S pieces

of VN_2(xN-2,rN-2=8) are also labelled.
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with cost VN(2:1) or to xN =- with cost V_(6:1)).

In the third possible situation that can arise for VN-2 (xN- 2 rN-2=1),

as shown in figure 7.18, the optimal controller has only (1) 5

pieces (the same number of pieces that VN_ (XN rNl1 = 1) has). In

this situation the optimal controller drives Xlinto the same p(l,2:x)

piece which

piece into which it drives xN. That is, active hedging (if any) is

done immediately Cie, at time k = N-1) using control uN-2* The con-

trol UN 2 is used to hedge to XN 2  -4 (for VN 2 (2 :1) or xN_ =

(for V2 (4:1).

Various aspects of these three situations are summarized in table 7.3.

What we would like to do is relate these various active hedging strategies

to the values of the problem parameters. We first note that from figures

7.16 - 7.18 we can obtain the following graphical conditions related to

these three poss-ible situations for VN_ 2 ( xN_ 2 ,rN-2=1) in this problem.

These are:

Fact 7.4 : For the problem (7.2) - (7.5) with facts 7.1, 7.2, 7.3(1)

holding and (7.12), we have the following:

(1) Situation (1), as in figure 7.16, occurs if and only if the

leftmost intersection of the two quadratic functions

N, (LN_2 ) and V3"2 (xN2) is to the right of e (3)/a(l).V N- N-2and -2 (N-2)N-2

(2) Situation (3), as in figure 7.18, occurs if and only if

the leftmost intersection of V4, (xN2) and V' 2 (x is to

the left of or exactly at the leftmost intersection of
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Situation 1 Situation 2 Situation 3

(Fig, 7.16) (Fig. 7.17) (Fig. 7.18)

Number of pieces of

N-2 rN2 rN-2 1) 9 7 5

and uN_2 (N2-1)

.m possible)
V.(1:1)NV2((i1

Endpiece functions V (1:1) (N2 1)2*N-2 N2N-
vN_2 (9:1) VN (7:1) V.. (5:1)

Middlepiece function V (5:1) V (4:) V (3:1)
N-2 VN-2 VN-2

Other pieces that do

not involve hedging-to V (3:1) ....
VN-2

C or-cL VN2 (7:1)

Pieces involving
hedging-to-a-point VN_2 (4:1) VN_2 (3:1) VN_2 (3:1)

with UN_2 VN_2 (6:1) VN_2 (5:1) VN_2 (4:1)

Pieces involving

hedging-to-a-point

with uN_1 (but not VN_2 (
2 :1) VN_2 (

2 :1)

with N2) V 2 (8:1) VN 2 (
6 :1)

Table 7.3 Comparison of three possible situations

for VN_2 (xN 2 rN- 2=1)
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2,U l,O.V'(N- 2) and v_2 (XN2)

(3) Situation (2), as in figure 7.17, occurs when (1) and

(2) above are both not met. A necessary condition is

what 4,L and V2 intersect.

Proof: Immediate from figures 7.16 - 7.18.

In appendix C.13 the values of the leftmost intersections of

4,L _3,U . 4,L and . 2,U ad l,U. 4,L d 2 ,U-
%-2 N-d v 2 ), (vN-2 VN-2' vN2 VN- 2 ) ' VN 2 a N-2

and the value of 82(3)/a(1) are listed. From fact 7.4 and these
N-2

values we obtain the following:

Fact 7.5: For the problems of fact 7.4,

(1) situation (1), as in figure 7.16, occurs if and only if

b2(1) A

a(1) < (1 + 1) KN( 2 ))
.(7.32)

1 + V - R(1) + b2(1) _(4)
R(L) + b 2 ( I )  

( 3 )

(2) situation (3), as in figure 7.18, occurs if and only if

+ R(l) KN(1)) ((i + vT I) (7.33)

I 2 A
4 R(1) + b (1) KNI(4)
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where x is given by (C.13.36).

(3) situation (2), as in figure 7.17 occurs if and only if

(7.32) and (7.33) are both not true. A necessary

condition is that x2 < 1 where x2 is given by

(C. 13.44).

Proof: These conditions are derived in appendix C.13.

Conditions (7.32) - 7.33) are implicit relationships that can

be tested for any given set of problem parameters. These conditions

are quite complicated, however, and it is consequently very

difficult to deduce general analytical properties from them.

However, we can use facts 7.1, 7.2, and 7.3(1) to obtain sufficient

conditions that are more easily analyzed.

Fact 7.6: For the problem (7.2) - (7.5) with facts 7.1, 7.2,

7.3(1) and equation (7.12) holding

(1) if

2
(a + b(1) Y(21

1(1) ^af2(I) <

IR---)(WH2 1)(K (1:2) + Q(2) - Q(l) - KT(l))
Sb(1) 1 1

1 + l( W2)(KT(l) + Q()) + W2(KNi_(1:2) + Q(2))]

then situation (1) (figure 7.16) describes VN_2 (xN_2,rN_2 I).
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in particular we have this situation when

21 b (1)
a(2) R(1- KN(2)). (7.25)

(2) If

22 A
a(l)> (1+ b(1) K(1)) 1+ - [1+ b2(1)---!

R(1) N( 1 +- (2 )
2

1+ R (1) (1W2(KT (1) +Qlf
-"" ~~~~ ~ ~ ~ i+ b2 (i--)'i 

)( ) 2 (KN-i (I :2)(K (i )+ Q(2))]

b2 (1) A
- 2 R(l- (2))

2 RU-- (i+ b 2 (ll ) A%

b1: R(1)

("+ R(1 ) -iL(1 :2) + (i-w21 Q(1)

-- + W 2 Q(2) /

l+ 2 (1)
F () -W)(2KNI(1:2) + Q(2) Q() - KT(1))

.2
'R(l) + b (1)[ i(1:2) + 1-W2) Q(M) + 2 Q(2)]

(7.36)

then situation (3) (figure 7118) describes VN_2 (xN-2 ,rN-2= ).
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(3) If

2b 2 (1) ^

a(1) > (1 + b(-) K( 2)]
R (i) 1 ) Q(2) - Q(1))

2
+ (2)- V

b2 (1) + (
1+ R ( N-l ( 1 :2) + (i-W2) Q(1) + w 2

(7.37)

and

2 -b
2 ( -)

ab(1) <(1+ (1) ) + (1+ R(1) %(2))

a(1) (12 +l (1---WR 1 (1) KN(1 2 )

+ N-I 1: + (1-2) Q()

2+ Q(2 ))J 2.

(1+ b (1) KN(1))

(+ .2 (KT (1) + Q(

+w (1~: 2 ) +Q(2
22

1 + b 2 (1)[(W2 - 1 ) (Q(2) - Q(1) + KT (1)]

+ K i(1: 2) - KT(1))]

R(1) + b (1)

A \ [((i- 2 ) (KT(1) + Q(1) + W2 (KNI(I:2 ) + Q(2)1)

(7.38)

Then situation (2) (figure 7.17 describes VN 2 (rN 2 ,rN 2 )

Proof: See Appendix C.13.
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Using (C.13.52) - (C.13.53) in appendix C.13, we can compare (7.32)

with (7.34) and (7.33) with (7.38). We find that for (7,34) and (7.38)

to be necessary as well as sufficient we would need either b(l) = 0 or

*2 
= Wl or KNl(l: 2) = KT(l). All of these possibilities are excluded

by facts 7.1 - 7.3. That is, the conditions in fact 7.6 are always

sufficient but not necessary.

Note that conditions (7.34) - (7.38) of fact 7.6 depend upon the value

of a(l) on only one side of each equation. This lets us interpret fact

7.6 as a set of conditions which relates values of a(l) (that is, the

stability of form r=l open loop dynamics) to the three active hedging

strategies of figures 7.16 - 7.18. For sufficiently small a(l), where

(7.34) is satisfied, we have the optimal controller of figure 7.16. For

larger a(l) satisfying (7.37) - (7.38) the optimal controller must

hedge-to-a-point with either u- 2 or uN-1 for all XN-2 that are not

in the endpieces and middlepiece domains. For sufficiently unstable

a(l) satisfying (7.36) the optimal JLQ controller cannot delay in its

active hedging - for all XN2 inside the switching regions it will

immediately hedge-to-a-point using control Thus for this example

problem with commensurate performance and reliability goals, greater

instability of the normal operation dynamics (that is, larger values

of a(l)) force the controller to actively hedge sooner. The optimal

controller must drive x into the advantageous region of p(l,2:x) -sooner

for large a(l) than for small a(l) because the larger value of a(l)

tends to push x deeper into the disadvantageous region of p(l,2:x)

Thus the cost of hedging-to-a-point (crossing into the good p(l,2=x) piece)

lwhere the probability p(1,20x) of a (costly) failure occurring is
smaller (that is, 1xjim.).
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In the remainder of this section we will examine the optimal JLQ

controller for problems satisfying (7.34) of fact 7.6. What we find is

that at all times (N-k), the optimal JLQ controller follows the pattern

of figure 7.16. This lets us obtain a recursive description of

V Nk(X Nk,r Nk=1) and u Nk(x Nk,rNk =1) at each time (N-k).

A typical VNk(XN,rN~l) curve is shown in figure 7.19. It hasA ypca VN-k (XN-k rN-k

mNk (1) = 4k+l pieces:

2k pieces wholly to the left of zero

° 2k pieces wholly to the right of zero

and

* the middlepiece around XNk =0

The curve is symmetric about N-k= 0.

For xN-k in the middlepiece (i.e., for cNk (2k) < xN-k< 6N-k(2k+l)),

the optimal controller will result in i N-k+9I < c& for k = 1,...,k.

That is, the x process will be in the advantageous piece of p(l,2,:x) at

all future times.

The first piece to the left of the middlepiece (i.e.,

Nk (2k-l) < xN- k < 6 Nk(2k)) corresponds to using uN-k to achieve

X Nk+1 = - CL. That is, we use the control uN-k to immediately hedge

to a point. Then the optimal controller will keep the x process in

the middlepiece from time (N-k) + 2 through time N. Similarly the

first piece to the right of the middlepiece (i.e. 6k(2k+l) < x <
N-k N-k

6N (2k + 2)) corresponds to using UN4k to immediately hedge to
N-k Nkt

XNk+l - (and to keeping IXN-k+ZI < a for Z = 2,3,...,k).

The second pieces of VN-k (xNk,rN-k=l) to the left and right of
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way of thinking about future hedging options that leads to the finite

time-horizon approximation of the infinite time problem that is

developed in section 7.7.

Before stating the solution to problem (.7.2) - (7.5) with facts

7.1,7.2,7.3(1) and 7.6(1) holding, let us recall the following short-

thhand notation. Let V (i:l) and UNk(i:l) denote the i piece of
N-k u-

VN-k (xN-k,rN-k l) and uN-k(xN-k,rN-k=l), respectively, counting from

left to right. That is,

VN-k (xN-k rN-k=1) = VN-k (i:l)

_k(xN1k,rNkl) = uNk i:l) (7.39)

for 6 (i-l) < x (i
N-k -N-k - N-k

-,
i = 1,..., (4k+l)

Proposition 7.7: For the problem (7.2)-(7.5) with facts 7.1,7.2,7.3(1)

and 7.6(1) holding, the optimal JLQ controller can be described by:

1) The number of pieces of VN(x ,r k1) and
VN-k N-k N-k=

u Nk(x Nk,rNk =1) at time N-k) is

mNk (1) = 4k + 1

1
For the general problem of chapter 5.
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2)

This is the maximum possible number of pieces. That is

all eligible candidate cost-to-go functions (by Proposition 5.2)

are optimal over some portion of their regions of validity.

These eligible candidate costs are

Vt 'U  t=l,...,4k-i (driving x 1. into Ak(t)
-N-kk+1 N-k+

kL
N-k (hedging to xNkl a

VNk (hedging to "Nk+I

3) V (x ,r =l) and Nare
N-k N-k N-k,1 n ON-k(XNCkk =)ae

symmetric about XN-k = 0. That is,

N-k- it 4k + 2 i:l), (7.41)
I 'EN-K

% N-k
lu

U-UN.-k (4k+ 2 - i:l)j (7.42)

N-kNN-- k

N-k(1) = -k MN 4 + 1 i) C7.43)

for i-1,2,...,(2k+l). (Here 6k(0) = -
N-k

4) The closest grid points to zero in the composite XNk+l

partition are + a.

That is

7NMk+i) (i) i = ,...,2k-2

N-kkti

YN-k+l (2k-I) -a (7.44)

YN-k+l (2k) = 1

YN-k+l (j)  N-k+l (j - 2 )  j = 2k+l,... ,4k-2
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5) The odd-numbered pieces of VN- (x -rNk=1an

UN-k(xNk krN-kl) are given by

V k(i:l) 2 K (i) *')
N-k 'KN-k N-k (~)(.5

'Nk(i:l) = -LXk (i:l) XN-k (7.46)

optimal

N-k - xN-k - 'N-k('

i = 1, 3, 5,..., (4k+l1)

These costs are optimal for xN~ values where the best

strategy is not to use any of the controls u Nky ... UN-1

to hedge-to-a-point. They include the left-endpiece

V Nk (1) =V Nk(1:1)

the middle-piece

(1)m ~ (1) V k( 2 k+1:1)

and the right-endpiece

~re (1) =V (4k + 1:1)
N-k N-k

6 ) The even-numbere pieces of VN- (x ,-"r N-=1) and

u Nk(xNk r )~ are given by

2
VN-k i:l) =XN- -k(i:l) + x N-k H Nk(i:l) + G Nk (i:l)

(7.47)
U~(i:l) -Li:l + i1 (748uN-k N-k 1)N-k N-k(: 7.8

optimal 6N- (i-i) < x < (
N-k - N-k - -

for

21 ,6 .. ,4
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These costs correspond to actively hedging-to-a-noint

at one future time. Specifically,at each time (N-k)4N and

for each i = 1,2,...,k:

V (2i:l) is the cost associated with using control
N-k

UN i ~to hedge-to-a-point. That is, it is the expected

cost-to-go which results if

UNk+ _1 keeps XNk+Z -

for each 1,<Z £ k-i (when k> 2)

and then
UN i  hedges to XNi+l --+

and then
UN-k+Z-l keeps -< XNk+Z < 0 for Z= k-i+2,...,k

(when k> 2)

So VN-k (2k:l) corresponds to hedging-to-a-ooint immediately

(using uN-k) and VNk (2:1) corresponds to hedging-to-a-point
at the last time (using uN_1 ) . Similarly, for V Nk(1 :1)

(where j = 2k+2,...,4k) the optimal controller uses

N- 2

to hedge to

x. 4k-I =c

7) The cost parameters in (7.45)-(7.48) are given recursively by

the following set of coupled difference eauations:

C.3
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" " . For k N-1,N-2 ..... , the form r=2 parameters obey:

2
a (2) R(2) [Kk+i(1:2 ) + Q(2 )]

Kk(1:2) = 2(7.49)

R(2) + b (2)[ +i(1. 2) + Q(2)]

b(2) ( 2)(.0
Lk (1:2) -- a(2)R(2) Kk(1:2) (7.50)

with

KN(I:2 ) = KT(2 ) (7.51)

* For k=1,2,...,N

2 ( )

a ( R(1) IN_k+l( 2 k) (7.52)

KNk( 2k+l- ) = 2
R(1) + b (1) KN (2k)

N- k+1

where

(2k )  (1-W) [KN-k+12k-1:) + Q(1)1 +

+ W Nk+l (1:2) + Q(2)J (7.53)

with

KN(l) - KT(.)

and

b(1)
LN-k (2k+ ) a(1) R(1) KNk( 2k+l:l) (7.54)

(Here LM(1 Rm () LB ()(2k+1:1)).

For k=1,2,...,N and i=1,2,3,...,2k-1

LI ~2 A''K i
a (1) -k+li) (7.55)

L 2
R(1) + b (1) KN-k+l(i)
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where

KNk+(i) ++J K~k (1:2)\

with (7.56)

K N(i) = I(1) (7.57)

and

L (i~1) = b(1) K C
N-k (i: (1) KN-k (i:1), (7.58)

a (1) R (1)

* for k =1,2,...,N

Vf2k1l a2 (1) R(l) ( 92KN-k 2(7.59)
b (1)

2a(1) R(1) C_(2k: i)=
b2 (i) (7.60)
b (1)

2 ^
Sk(2k:l) = [R(l) (1) b2 (2k)] (7.61)
GN-k 2 %-k+l

b (1)

L (2k:l) = a(1)/b(1) (7.62)
N-k (-2

F (2k:l) = -c/b(i) , (7.63)
N-k (-3

* for k = 2,3,...,N and i = 2,4,...,2k-2

a(H)R(1) (1-W2)H (i:i)

gN-k (i:l)2
R(1) + b (1)K (i)(7.64)

N-k+.

2a(1)R(1)CL (k-l)/2 [a(1)R()(I .)

b (1) til R(1) + b(1) KNk+(

(7.65)
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and

GN-k (i: 1) = (1 2 ) GN-k+l (i: l)

2 2 2 (.6
-b (1) [ Hk+ (i) (7.66)2 N-2 "

4[R(1) + b (1) %_kli

S(F1(i:) =(b

N-k 2
2(R(1) + b (1) i)] (7.67)

- for k=1,2,...,N

= -c b (l)
•5N(2k) - 1 + R(I---- - (2k)) (7.68)
N-k ciLi R() -k+l

" for k = 2,3,...,N and i 1,2,...,k-1

*N-k+l (2i) b2 (1) A

S( (2i)R (+ -k+l(2i+)) (7.69)

b ()

i) 2 i 1+ R(1) K-k+Z12 i + )I + K(( i)I
a(l) R(l) )N-i+la(l)

0 =a(7.70)

r for k=1,2,...,N and i =1,2,...,k

21
-HNk (2i: l ) - k (2i - ( 2 i : l ) GN-(2i:l)

k(2i-1:1)
6 N (2 i-1 ) 

-

N-k" 2 [_k (2i:l) - Kk( 2 i-l:l)]

(7.71)
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8 ) By symmetry we have (for each k=l,2,...,N) for i=1,2,.. .2k;

_k (i~l) = Kk( 4 k+2 -i: 1) (7.72)

Hk (i) = -H (4k+2-i: 1) (7.73)
N-k "N-k

GNk (i:1) = G (4k+2-i:l) (7.74)
N-k N-k

F Nk(i:l) = FN-k (4 k+2 -i:l) (7.75)

L (i: ) -L (4k+2-i:l) (7.76)
N-k N-k

9) At each time k = 1,2,... we have the following relationships:

Kk( 2k+ll) < Kk( 2 k-l:l) < ... < KNk( 3 :l) < KN (1:) <
'N-k K-k -kN-k

< K N-k (2:1) < k <(4 :1) ... < KNk( 2k:!)

(7.77)

6N (2i-l:l) < 6N (2i:l) < 6k(2i+l:l) (7.78)
N-k N-k N-k

i=i,2,. .. ,k

;. _(2k+2) < _(2k+l) < (2kIk-1) < _(2k-3) <

... < KNk(3) < KNk(1) < mN-k(2) < K Nk(4)

< -k ( 2 k )  (7.79)

FLHere AML

Here k( 2k+l:l) LB (1) = (1) and

Le tIErNk'' K (1)
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10) For i = 1,...,k

Vk(2i:l) > VN(2i+l:l) except (7.80)
N-k NM-k

equality at xN-k = Nk (2i)

and

6 Nk(2i-l) is at the leftmost intersection of

Vk(2i:l) and VN(2i-1l1)

N-k VN-k

Proof: The proof of this theorem involves an induction on (N-k), starting

with k=2. The proof is developed in appendix C.14 C

The remarkable thing about this problem is that the optimal control

law and expected cost-to-go at each time k=k ,... ,N ('for any finite time
0

horizon problem) can be computed recursively from a (growing) number

of difference equations running backwards in time. We need not follow

all the flowchart comparisons and tests of section 7.2 for this class

of problems. Thus this problem lends itself to detailed analysis

and interpretation.

In particular, for this problem we can clearly see what each piece

of the controlleL is trying to accomplish. Refer again to fig. 7.19,

where a typical VN-k(xNk rN-k=l) is shown. The middlepiece is the

lower bound cost associated with not having to hedge-to-a-point, be-

cause XN-k+1 will be in the p(l,2:x) region that is best according to

both the system performance and reliability goals. The endpieces are

ighest
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in cost because the controller never drives x into the good p(1,2:x)

region. The even-numbered pieces correspond to hedging-to-a-point at

successively further times in the future (as we move away from the middle-

piece in figure 7.19), with successively higher costs being incurred.

In figure 7.20 the optimal control law UNk(XNkrNkl) is

shown for these problems. Note that this control law is discontinuous

atNk(1)I i=l,3,...,(2k-l)} , where VNk(XNk,rNk=l) is not

differentiable. In figure 7.21 the optimal mapping from XN-k to

X (given rNk=l) is graphed. There is a region of avoidance

associated with each control law discontinuity. Thus at all times

(N-k) we have the type of behavior illustrated at time (N-1) in

figures 6.10 - 6.12.

Let us now consider the JLQ optimal controller of Proposition 7.7

as the time horizon (N-k) grows large. From (7.40) we see that the

number of pieces of the optimal controller grows without bound as

(N-k) goes to infinity. Thus the exact infinite time horizon optimal

controller is not obtainable precisely via any finite algorithm.

However, (as we hinted prior to stating Prop. 7.7), as (N-k) grows

large, many of the additional controller pieces correspond to hedging

very far into the future. As might be expected, the savings obtained

p(l,2:x) domain that x is in becomes small as the time when this change

is effected becomes distant. As a result, the structure of the optimal

effected becomes distant. As a result, the structure of the optimal

controller does converge to a steady-state controller which we can

approximate with arbitrarily small error by choosing suitably large (N-k).

From (7.57) it is straightforward to show that for any k, the
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k time-sequences of odd-indexed cost parameters;

{- ( 2 i - l : l ) N  ~ (i=l,....,k)

are each given by the same recursive difference equation:

compute k(2i-1:1)}N  via (7.55) - (7.56)Y-k k=l

from terminal condition

K-I( 2i-1:1) = KI- i (l) (7.81)

Only the terminal times and conditions are different in the computation

of each of these odd-indexed sequences. At a fixed time (N-k), these

k cost parameters

°k(2i-1.1), i=l,...k}

correspond to all of the pieces of VN-k (x NkrN-k=l) to the left of the

middlepiece where the optimal controller does not hedge-to-a-point

with controls N-k....' N-l" Here i=l corresponds to the left end-

piece %k(l:l); i = k corresponds to XNk+l < -% but all XNk+2...xN

greater than -a; for an arbitrary i = 2,...,k, we have XN-k+l,*,XN-i+l

all less than -a and xN-i+2,. ,xN all greater than -a

We know that Lk(1) increases monotonically toK Le(1)as

(N-k) 4 - and %-k(l: 2) Y ..(l:2) is monotonely increasing as well.

Thus

Le
lim Kk(2i-1:1)= l(1) (7.82)
(N-k)

and this convergence is monotone increasing. That is, if one looks at

1
From facts 7.1 - 7.3
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<I

a particular odd-indexed cost parameter K (2i-1:1) (for 1 < i < k;N-k - -

counting from the left) and lets (N-k)-- , then this cost parameter

Le
looks increasingly like the limiting left-endpiece cost parameter K (1).00

That is, changing the transition probability piece in the far future

looks like never changing at all. This is not suprising when one considers

that the range of x values where

VNk (2i-1l:) = XN-k2 %-k( 2i-l :l)

is optimal (i.e. the interval (0 (2i-2), N(2i-1))) moves further
N-k 'N-k

and further leftwards as (N-k) increases.

Similarly, from (7.59) - (7.56) we see that the k time sequences

of even-indexed cost parameters:

lN (i=l,2,...,k)

{KN-k(2 lk~l tz

are each given by the same recursive difference equation:

N

Compute {KN-k(2i:l)}k=i via

(7.55) - (7.56) from terminal condition

2
S() R(1) (7.83)

b 2 (1)

Only the terminal time is different for each i. At a fixed time

(N-k), these k cost parameters {K-k(2i:l) i = l,...,k} correspond

to all of the pieces of VN.k (xN-krN-k'l) to the left of xN-k=0 from

which the optimal controller will hedge-to-a-point at some (single)

future time (i.e. with one of the controls uN-k' ...UN-). Here i = 1

+
corresponds to using UN_ to drive x to -a ; i=2 corresponds to using
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+

U to drive x to -a ; i-k corresponds to immediate hedging-to-a-
'N-2 N-1

point (using UN-k to obtain 'N-k+ 
-+

Thus from facts 7.1 - 7.3

lir 'Nk(2i:l) = Le(1)

(N-k)

as well; however this convergence is monotone decreasing.

It is immediate from (7.65) and (7.66) that

lim H (2i:l) 0
(N-k) N-k

lir G (2i:l) - 0
(N-k) 

-  N-k

for i=1,2,.., So for all i=1,2,..,

limn VN -k i:l) = V.(1) (7.84)

That is, as (N-k) increases for this problem, the number of pieces in

VN-k (xN-k'rN-k) increases without bound and, for any fixed i, the

function VN k(i:l) approaches the endoiece function V Le(1) in shape.

The odd-indexed pieces V (i:l) (i=l,3,5,...) approach this limit1
N-k

from below (this follows from (7.77)); the even-indexed pieces

V Wk(i:l) (i=2,4,6,...) approach it from above.

From parts 2,5 and 6 of Proposition 7.7 and from (7.78) it fol-

lows that the width of the switching regions SlL SI,R (that is,
N-k ' N-k

the range of x values where active hedging at some future time is

at each x
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optimal) increases as (N-k) increases. However (7.84) implies that

as (N-k) increases, active hedging in the far future1 yields decreas-

ing savings in the optimal cost relative to the endpiece cost func-

tion 2 VLe (1)
N-k

Condition (7.84) does not easily yield any further information

about the structure of the infinite time horizon solution, however.

In order to obtain further understanding of the infinite time horizon

problem it is useful to alter the indexing of the controller pieces.

Let us count from the middlepiece outwards instead of from left to

right. This indexing will use the notation " < >" Let

V < i > H < i >
N-k N-k

uN-k < i > GN- k  < i >

KN-k < i > LN- k  < i >

FN~ < I >
N-k

for i = -2k, -2k+l,...,-l,0,l,2,...,2kP th
denote the i piece to the left of zero if i < 0 (and to the right of

zero if i > 0). Here i=0 denotes the middlepiece. Similarly let

N-k < i > i=-2k,-2k+l,-l,l,2,...,2k

th
denote the i joining point of V (x -k rN-k to the left or right

N-k N~kr~l

of zero.

that is, for oieces far from zero.

2 which is also an upperbound for Vk(xkrN 1) for this

problem by Fact 7.3. N-k N-k'rN-k f
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Thus the middlepiece at time (N-k) is

V _k <0:1> = N-k (1) vN_ k (2k: l )

and the endpieces are

V=<-2k> e (1) = V(1:1)
N.-k N-k N V-kl

L V <2k > VRe C)=V,,, +:l

VN-2k k > __k

These two methods of counting the pieces of V (x ,r =1) are
VN-k N-k' N-k=

illustrated in Figure 7.22

I ° 4 IV(061:1)
Vi:1i ' V(ZI,;I) i V(iK-Ii) V(ZK.Z:I ) v(I I -l.

N-i M-t I N-iK t#- x 1M-K I W-K

0W

i. .4- K N-I <l. N-K F4--

r I-l . fI - .. I" f'V(-Z) SIV-L4 ,e vI > I o S I,

i"I I I I iAK I
I- A-K m- M

N-K

SFigure 7.22: Counting VN k(xNk rN~k =1) pieces from the left

(as in the top line of the figure) and from the

center outwards (as in the bottom line of the figure).
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We already know the steady-state behavior of the middlepiece and

endpieces. Using the < > notation we can summarize and amplify

the discussion above by the following:

Proposition 7.8: For the problem of Proposition 7.7, as (N-k)-

we have:

1. The number of pieces mN.k(l) = 4k+l of the controller

becomes countably infinite,

2. In form r=2 the expected cost-to-go converges monotonely

as (N-k) increases to KO (1:2) given by (6.98), and

LN-k (1:2) converges to

b(2)
L (1:2) = (2)R(2) K (1:2)

3. The middlepiece functions (of x) for k=l,2,...,N)

V <0> = V (2k+l:l)
N-k N-k

UN-k <0> = U (2k+l:1)
N-k N-k

converge monotonely as (N-k)- to the steady-state functions

V <0> = vLM(1) = x 2 K <0>

u <0> = ULM (1) = -L <0> x

where

KLMK <0> (1) =lim K <0> is the
00 00N-k

(N-k) -

unique positive solution of (6.107):

From Propositions 6.2 and 6.4, and (6.106)- (6.107)
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|r

- .-. '- .

- tR(1) l-a 2 (1) (1-W ]

+ b2(1) Q(1) + wI(K (1:2)+Q(2)-Q(1)

2
IR (1) 1l-a (1) (1-w 2)

+ b2 (1) Q(1) + W (K (1:2) + Q(2)- Q(1))]

+ 4a2 (1)R(1) b 2(1) (1-l )  Q(2) -Q(1)+

+ (2)

2 b 2 (1) (1 - w
(7.85)

and

0 LM
Lw<O> L (1) =lim L Nk<0> is given by

(N-k)- -k

-, Ob(l)
a(1) R(1)- 0>

4. The endpiece functions (of x) for k=1,2,...,N

Le

N-k R-~ 1  
= (4k+l.l)

Le
u_ <-2 = 'N-k 1 ) =uN-k:1)

Re
UN <21o, = uNe1 = U ~(4k+l:l)

2-k 'N-1(1) uN-k (k11

converge monotonelyas (N-k)-*- to the steady-state

404



functions

Le
VLe(1) - vRe(1) = x Ke (1)

Coo

Le Re Le (11
( (1) - (1) =x

where

KLe(1) lira K k <-(N-k)> = lra K k(1)

0(N-k) (N-k)C

is the unique solution of (6.106):

2
R(I-a) l-2 (11 2) ] 2t

I + b ()

(K (1:2) + Q(2) -

[W 2 0o

~l-a (1)(1-w 2)]2

+b(1)

=L ~) W2 (Ko (12 [) + Q(2) - Q(1))lj
2 LW 2b (i) (12)+-(2 2 (1)

and

Le
L = lir k <-(N-k)> = in k (7.86)

(N-k)- (N-k)-c

is given by
Le b(l) KLe
C0 a(l) R(I)
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5. The functions

2
V <+2i> x < -+2i>
VN-k N-k KN-k

<± - <-2i> X

(for i=l,2,...,k and k=l,2,...,N)

converge monotonely to (N-k) to the functions (of x)

2
VO <-2i> = K <±2i>

ub <+2i> = -L3 < - 2i> x

for i=l,2,3,... where

2 a(1) (1) [(12i2 ) (,<-2(i-1)>+Q(1)) + W2 (Q(2)+KY(I:2))

R(1)+b 2 (1)] (i-W2 ) (Kb,<-2(i-l)> + Q(1)) + W 2 (Q(2)+KC,(I:2))]

(7.87)

and

b(1)
L <-2i> = a()R() <-2i> -L<2i >

These pieces of the limiting controller correspond to never hedging-

to-a-point. For V <±2i> , the x process stays outside of the

advantageous p(l,2:x) piece (-a,) until i time steps in the future,

after which it stays inside (-cc) forever.

6. The functions (for k=l,2,... ,N)

2
V <±l>=x2  K >+ H <±>x +G <±1>
N-k N-k -N-k<±'> N-k<±I >  N-k N-k
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converge monotonely as (N-k)-Ow to the functions (of x)

2-V<- > = x K<tl> + H <±l> x + G.<±l>

where
2

<> <> = a (l)R(1) (7.88)

b (1)

2H <-1> S H <-1> = 2a(1)R(1)/b (1) -H <+i> (7.89)
N-k

<i>= lir GNk<-> - - F(1+b2 (1) (1- ) (K <0>+Q(1)
(N-k)+ b 2 ( I )  + ( K, (1: 2) +Q(2))

(7.90)

and the functions

U < - I > = -L <±l> x + F <±.>

at all k, where

L <-l> (2k:l) = a(l)/b(1) = -L <1> (7.91) I"iCO LNkCO

F <±l> Fk (2k:l) =-ax/b(1) (7.92)

These pieces of the limiting controller correspond to hedging to-a-

point iwediately (using the very next control input).

7. For k=2,...,N and for each fixed ie (l,...,k-l}

2
VN <±(2i+l)> = <(2i+l)> + H <+(2i+l)> x + G < (2i+l)>

VN-k<2'l XN-k N-k -N-k N-k

and

uN=k<± (2i+i)> - _k<± (2 i+l) > N-k + FNk<( 2 i+)>

407
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converge monotonely as (N-k)-~ to the functions (of x)

2
vof±(2i+l)>= x K,,<±(21+1)> + Hc,f±(2i+l)> X + ,<(2l>

ub(±(2ii-)>= -L.<±(2j+l)> + Fo,<t(2i+1)>

where

t <±211) a2 (1)RC1) [(1-W 2  (c,<(2j1)+l)> + W 2 (c,:2))

R(l) + b (1) (1-W <(2 )+ w2L+ Q(1) ,(:2)

(7.93)

b (1)L <-(2i+l)> =K <-2i-1> =-L (2i+l> (7.94)

aa(11(1)21)

-H~~~ <2+> ~ -(2i+1)>=2

+Q~l)K (1:2)l

(7.95)

-b (1)
F ±2 -) H <-(2i+1)> =-F <2i+1> (7.96)00 ~ 2a(l)R(l) 0

G,,<±) 2i+l) > = (1-w 2  G ,<± (2i-1) +1) >

b(1)(1-W 2 (H ±2il>2

2
4R(1) + b (1) (K0<± (2(U-1) +1) >)(-w)iw Q)

(7.97)

ki
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These pieces of the limiting controller correspond to hedging-to-

th
a-point using the i control after the one that is immediately applied.

That is, they correspond to hedging-to-a-point i time steps in the

future.

8. As (N-k)- the joining point

Nk<-I>  = Nk(2k) converges monotonely to

<-l> =2lim 1 <-i>=-O b(<0>/ b (1)
N-k) N-k a(l) R(l)

FW (K . ( 1 : 2 ) +Q ( 2 ) )J

(7.98)

and 6 <+l>+ 6<+i> = -S(-l>
N-k 0

9. For k=2,3,...,N and each fixed ie{l,...,k-1} , the joining points

Nk<-(2i+l)> converge monotonely as (N-k)- to
N-k

~< (-2i2) U1) +1 R>1 2

a+ Q(l)

an LY2(K(1:2) + Q(2))

(7.99)

and +(2i+l)>- 6<2i+l)> = <-<2i+l

409



1.0. For k-1,2,. . .,N and each fixed i e{l,.. .,k}

5 <-2i> converges to
N-k

60<-i -H (<-2i+1> -fZ-2iy+1> - K <-2i>] G.,<-2i+l>

2[K <-2i+l> -K <-2i>1

(7.100)

and6 <2j>-~6 <2i> = -6 <-2i>
ad6N-k <2> 00

* .11. For the limiting problem solution paramneters, as (N-k)-~ the

* following relationships hold:

4Le
(i) KO<0> < K O2> < KOO<4> S< KLe1) (.11

(ii) Ko<-l> > Ko<-3> > <->> > L
K~ (1) .102)

(iii S0 <-2i-l> < 600<-2i> < d6 <-2i+l> (7.103)

hence
6 <2i+ >- 2i-1 > > 0

000
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The proof of this proposition follows directly from Proposition 7.7.

and our previous discussion. Proposition 7.8 says that as the time

horizon becomes infinite, the number of pieces in the optimal controller

also becomes infinite but that each piece (counting from the center out)

converges to a constant steady state function that is optimal over a

constant steady-state interval of x values. From (7.104) we see that

the width of the switching regions will grow without bound as (N-k)

increases.

From Prop. 7.8 it is clear that we cannot implement precisely

a steady-state JLQ controller for the infinite time horizon problem using

a finite algorithm, because there are infinitely many controller pieces.

However the convergence of cost pieces to VLe(1) in (7.84) suggests a na-

tural approximation of the steady-state controller. The idea is to use,

at each time (N-k), the true optimal controller for a certain number of

pieces around zero, and approximate the rest of VN-k(xN-k,rN-k=l)by the

endpiece functions. As we will discuss in section 7.7, this allows us to

approximate VN-k (xk,r =1) arbitrarily well, and to relate the "com-
Nk N-kN-k

plexity" of the controller (in terms of the number of pieces to be

solved for and
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implemented) to the approximation error. This approximate controller is

essentially a finite look-aheAd scheme; the option of active hedging is

considered only for a finite number of future times. In section 7.7 a finite

look-ahead approximation of the optimal JLQ controller is developed for

the general class of problems of chapter 5.

In this section we have examined the structure of the optimal JLQ

controller for a class of problems having commensurate reliability and

performance goals. This class of problems has a solution structure that is

particularly amenable to detailed analysis. Its solution illustrates the

way the optimal controller uses active hedging to achieve fault tolerance

in this commensurate goals case. In the next section we will consider

the solution of an illustrative class of problems with conflicting

performance and reliability goals.
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7.6 Active Hedging When Reliability and Performance Goals are

Conflicting

In this section we consider an example class of systems that illustrate

how the optimal JLQ controller uses active hedging to achieve fault-

tolerance when the system performance and reliability goals are conflicting.

We will examine here the "case 2" single form-transition problem of

section 7.4, as (N-k) increases. Under certain additional parametric

conditions (that are derived here) the optimal JLQ controller at all times

k = N, N-l,...,k can be specified by recursive difference equations.

We will develop for this conflicting goals example results analogous

to those of the previous section for a conmensurate goals example. We

are considering the scalar, single form-transition problem (7.2) - (7.5)

where Facts 7.1, 7.2 and 7.3(2) hold. That is, we have

W 1 > W 2 (7. 105)

1
and figs. 7.9(b,c) and 7.13(b) apply. We will also assume that (7.14)

holds:

2(l) R() + b2 (1) KN(l) )
a (1) < i+ KN(2) )  - b2

aRl) N (1 ~ ) l -R(1) + 2(1) KN(2 )
(7.14)

Thus -a are the grid points of the XN_1 composite partition that are

closest to zero. Note that when (7.10) holds (i.e., there are local

minima in VN-(xN IrNl-)), then (7.14) holds for all 2 a(l) < 1.

1depending on whether (7.10) holds or not,

2
see comments following (7.10).
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In figure 7.23 we collect for convenience the curves of V N(x N,r N=),

VN(xNjrN-1=1), VN-l(x N1 r N-=1) and V N_(x NllrN_2=l) for this problem.

For this problem we have2 that the endpieces of Vk(xk rk=l) coincide

with the lower bound function V' (1) and the middlepiece coincides with

the upper bound (the opposite of section 7.5). The performance and

reliability goals of the optimal controller conflict because driving x

near zero (to the perfomance goal) necessitates driving x inside the region

(-ct,c& ) where the probability of failure is high. Thus near zero,

Vk(xkrk~l) reaches its upper bound cost. Far from zero, Vk(xkrk=l)

3
approaches its lower bound because the risk of failure (which, by

Fact 7.1, is costly) is kept small.

Let us consider now the candidate cost-to-go functions that are

eligible for VN-2(xN-2,rN-2=1). In Figure 7.24 we show the candidate

i,U (for i=i,2, ,7) for this problem Thesefunctions (of xN_2) VN_2  ...

functions of x coincide with solutions of
N-2

min

UN {VN-2 (xN -N2=1

s.t.

XN_ eANli) = (YN(i-l),7 N (i))

for those XN_2 values where the resulting XN is in the interior

of N (i).
N-1

As derived in Chapter 6 and sections 7.1 - 7.4

2By Facts 7.1 - 7.3

3•
That is, entering form r-2

4Fig. 7.24 corresponds with fig. 7.15 in the previous section.
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The following relationships that are pictured in Figure 7.24 are verified

in Appendix C.15:

l,u 7,U 3,U 5,U 4,UV - < < v <a (7.106)
-2 VN-2 N-2 VN-2 VN-2 N-2

2 ,U lIU
Vi2 >VN 2  for all xN-2 except

(2)/
equality at xN- 2 = N-2 a (l) (7.107)

6,U 7,u
N-2 N2 for all xN-2 except

equality at / (7.108)
N-2  N-2 /all)

In addition to the seven candidate cost functions that are shown in

Figure 7.24, there are two other condidate functions that are eligible

for V N2 N2r 1 ), according to Proposition 5.2.

The functions are

v3,R-2 xN-2 rN-2 )  
driving x to -a

(right boundary of A_1(3))

v5'L (XrN-2 1rN2=) driving xN 1 to +

(left boundary of "_i(5))

These costs result from driving x to the lower cost side of aN-I

VN_ 1 (xN_ir N-2=1) discontinuity. The parameters for V " 5 ' LV _
2

are listed in Appendix C.15.

We note that, by definition:

v3,R _3,U
-2R > V3-2 except equality at

xN 2 = ON 2(3)/a(l) (7.109)

5,L >_5,U
VN_2  VN_2  except equality (5)1
N-2 N-2 at xN 2  = (N2  (l) (7.110)
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If we superimpose the curves of V 3Rand V 5Lon Figure 7.24 and compare
N-2 N-2 -

*the regions of xN validity of each curvejwe can obtain (as in Section

7.2) the optimal expected cost-to-go, V (xN ,r =1), at each value

*of x~ 2  However V 3Rand V 5Lcan be in three different graphical
N-*N-2 N-2

i~,]

positions relative to the V f (i=l,...,7) of Figure 7.24, depending

* upon the values of problem parameters. we will examine each of these

three possibilities in turn.

We first refer to Figure 7.24. The functions VN 2 and V are

(by Fact 7.3) lower bounds on V (x ,r =1). Therefore they will
N-2 N-2 N-2

be optimal over their entire domains of validity. That is,

V- 2 (XN- 2 rN-2 ) for XN 2 <N_ 2 (1 )/a( 1 ) (7.111)

Nt1-2 N-2 N-2 N2x-2 N-

Sx _rN2=l) = V7, for x > (7)/a(). (7.112)

~~~2,UwilbTo the right of x __ 2( a(1), the candidate cost i2  be
N-2 N- 2~/aJ ca at os -2w

optimal until, at some xN- 2 >intersects another

~6,U
valid eligible candidate cost. To the left of 2(7) a(), ill

6,U
be optimal until, at some x1 _2 < eN_ 2 (7)/a(l), VN_ 2 intersects another

valid eligible candidate cost. We know from Proposition 5.3 that the

optimal controller mapping.

XN_ 2  XN_(XN_2,N2 =

must be monotone. We also know (from Proposition 5.1)that

VN 2 (xN 2 ,r 12=I) is continuous in XN2 . Thus we are left with the

following question:
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2,U 4,UHow does V (xN-2 ,rN2=l) get from the V_ curve to V and
N-2N-2 N2

then from the V6, curve to VU while satisfying the monotonicitythn ro te N-2 cuv oVN_2

and continuity requirements mentioned above? The three ways to super-

3,R 5,L
impose VN 2 and VN_2  on Figure 7.24 each correspond to a different

answer to this question. They are illustrated in Figure 7.25 - 7.27.

We will examine each possibility in turn.

The first possibility (shown in Figure 7.25) results in

VN-2(xN-2,rN-2=1) having (the maximum allowable number) maN-2(1) 9

pieces. Each piece corresponds to a different active hedging strategy

using uN-2 and uNl . This case is analogous to Figure 7.16 for the

commensurate goals problem of the previous section. The switching

1l,L 1IR
regions (XN 2 e SN- and x e SN_) are divided into three parts:

x-'2 N-2 N-2 N-2

. for XN2 e (N-2) (4)) and (5N-2()' 6 N-2(6))

the optimal controller uses UN 2 to immediately hedge-to-a-point

(to XN-1 = -a or xN_i = ot+). This keeps the probability of

failure at time N-I (i.e., the probability that rN 2) low.

Then UN- 1 is used to drive xN into the high risk piece (-a,a)

of p(1,2:k). This increased risk at time N is compensated for

by making xN near zero, so that the performance ost

2xN [Q(rN) + KT(rN)]

is small for both rN = land rN = 2.

*[for XN 2 e (- (2), N (3)) and (6 (6), 6N2 (7)) the
N2 N-2 N-2 N-2 N-2

optimal controller keeps IXNlI > a without hedging-to-a-point

with uN 2 . Then uN_ is used to make fXN1 < a without hedging-

to-a-point.
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Figure 7.26: VN (x N-2'r N-2 ) in the second situation. The ontixnal

* is indicated by the heavier line. The resulting ontimal

values of x N and xN1for each of the 7 pieces of

VN- (x N-'r N-l ) are also labelled.
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Situation 1 Situation 2 Situation 3

(Fig. 7.25) (Fig.7.26) (Fig.7.27)

Number of pieces of

VN-2 (x- 2,r N 2 =1) and 97 5

(maximum
'N- 2 (XN-2' rN- 2 -) possible)

rN-2(l)

Endpiece functions VN_2 (1:1) VN_ 2 (1:1) VN_ (1:1)

VN_2 (9:1) VN_ 2 (7:1) VN_ (5:1)

Middlepiece function VN_2 (5:1) VN2 (4:) VN 2 (3:1)

Other pieces that do

not involve hedging-to- V
- N-2(3:1)

-e or~ VN_ 2 (7:2 )

Pieces involving

hedging-to-a-point VN_ 2 (4:1) VN_ (3:1)
with uV (6:1) V (5:1)

UN-2  VN-2 VN-2

Pieces involving

hedging-to-a-point V (2:1) V (2:1) V (2:1)
VN-2 VN-2 VN-2

with uV (8:1) V (6:1) VN(4:1)
Nl1 (btN-2 VN-2 VN-2

not with u
N- 2

TABLE 7.4: Comparison of Three Possible

Situations for VN 2 (xN 2 ,rNl)
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for xN-2 e 0 N-2(1), N.2(2) 1 and 0N-2(7), N-2 (8)) the

optimal controller keeps [xj > c without hedging-to-a-
IN-i1>

point with UN 2 . Then is used to hedge-to-a-point (toi +
x=-a or xN = a ). That is, for these XN 2 values the

optimal controller does not let xN enter the high risk piece

(-a,a) of p(1,2:x). It is better at time N to stay on the

low failure probability sides of the p(l,2:k) discontinuities.

The second possibility (shown in Figure 7.26) results in

N-2(N_2,rN_21) having mN 2 (1) =7 pieces. Unlike the first situation

of Figure 7.25, there are no xN- 2 values from which the optimal

controller causes x and xN to be in different p(l,2:x) pieces without

using hedging-to-a-point. Here the switching regions (1L and 1N2)

of xN_2 values are each divided into two parts:

forxN 2 e ( 6 N2 (2), 6 N2 (3)) and (6 (4), N-(5))

the optimal controller uses UN-2 to keep xN-1 on the low

probability side of the p(i,2:x) discontinuity. That is,

N2is used to hedge-to-a-point X-i = -a or xN_ .

Then keeps XN inside (-ax) making xN small,

* forXN2  (N-2 (1), 6 N2(2)) and (5)-2(5' dN-2 (
6)) the

optimal controller keeps IXN-11 > C& without hedging-to-a-

point with N-2" Then UN_1 is used to keep xN outside the

high-risk piece of p(i,2:x) by hedging-to-points

x=-- orxN

.*-j In the third possible situation, as shown in Figure 7.27, the
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K ...- - -i -.. p l7 ..k

optimal controller has

m (U) =5 -m (1)
N-2 N-1

pieces. In this situation either xN and XN_1 are in the same p(l,2:x)

piece (that is, xN2 is in the domain of an endpiece or middlepiece of

VN 2 (XN-2 ,rN_2=I) or else the optimal controller hedges-to-a-point

at time N, using uN-l to obtain xN - -a- or xN = a +). In this situation

there is no immediate hedging-to-a-point (using UN-2 ) . This is in

contrast to the third situation of the commensurate goal problem (Figure

7.28) where the only hedging-to-a-point is immediate.

In table 7.4 various aspects of these three situations for

V (x ,r =1) are summarized. We want to relate these various
N-2 N-2 N-2

active hedging strategies to the values of the problem parameters.

From Figures 7.25 - 7.27 we can obtain the following graphical

conditions relating to the three possible shapes of VN_2(xN2 ,rN_2=)

in this problem.

Fact 7.9: For the problem (7.2) - (7.5) with fact 7.1, 7.2, 7.3(2)

and (7.14) holding, we have the following:

(1) Situation (1), as in Figure 7.25, occurs if and only if the

2,U
rightmost intersection of the two quadratic functions VN_2

and V3,U is to the left of xN_2 =N_2 (3)/a(1).VN- 2  N-2 N-

(2) Situation (3), as in Figure 7.27 occurs if and only if the

rightmost intersection of v2 'U(xN) and (x occurs to
N-2 N-2 VN2 N-2

the right of (or exactly at) the rightmost intersection of

and 4,U
(x and 2(xN2)VN_2  N- _N- N-
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(3) Situation (2), as in Figure 7.26, occurs when (1) and (2)

above are both not met. A necessary condition is that

3,R 2,U-2 (x N-2) and VN- 2 (x N-2 intersect.

Proof: Immediate from Figures 7.25 - 7.27. 0

In appendix C.15 the values of the rightmost intersections

of 2,U and 3,U 2,U and 4,U 3,R and VN2) 3R ando N-2 N-2)' (VN2 4,U N R2 andlVN-2

2,U. (N-2 (3)/a(l) are listed. From Fact 7.9 andVN_ 2 and the value of ar

these values we obtain:

Fact 7.10: For the problems of Fact 7.9,

(1) situation (.1), as in Figure 7.25, occurs if and only if

aC -) < (l+ -J) -N(2)X3  (7.113)
::i: R(l)

where X is given by (C.15.13).
3

(2) situation (3), as in Figure 7.27, occurs if and only if

b2(1)A

a(1) > (1 + R ( (2)) (1 -W2) X6 (1 -1 5- )

R + b K- ( 3 )

where X is given by (C.15.27) and X by (C.15.28).

(3) Situation (2), as in Figure 7.26 occurs if and only if

(7.113) and (7.114) are both not true. A necessary condition

is that 4 < 1 where X is given by (C.15.20).

.- 2
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Proof: These conditions are derived in Appendix C,15.

Conditions (7.113) - (7.114) are implicit relationships that can

be tested for any given set of problem parameters, We can use Facts 7.1,

7.2 and 7.3(1) to obtain sufficient conditions that are more easily

analyzed, similar to those obtained in Fact 7.6 for the three cases of

the commensurate goal problem. In particular we can use (7.113),

(C.15.13) and condition (7.14) to obtain the following sufficient

condition:

Fact 7.11 For the problem of Fact 7.9, situation (1) occurs if

ai:,.l_)R()+2 (I [(- 2)Q(1)+(A2 (K I(1:2)+Q(2)])
2(

I [R(1)+b 2 (l)K[(i- 2)f ) 2()+ (:)

2(1

(7.115)

Another weaker sufficient condition for situation (1) is that

b 1(1) + b2 (1)

b 2 2(i) (2) ) . . . . . .

a(R) < (1 + b)l) 2 Q (/ 2 2LM( )
(7.115)

2~) N R(l) + b K(1) (7.116

where KM(1) is given by

(i) = (1i- 'l) (Q(1) + KLM(1)) + w((2) + K (1:2)) (7.117)

for K ,(1:2) = lim Kk(1:2 ) as given in (6.98)
(N-k)-"O

LM Leand K (1) = lim Kj (1) as given in (6.107)
(N-k)4

7."

427



Proof: See Appendix C.15.

As in the commensurate goals case (Facts 7.5, 7.6), for the

conflicting goals case under study here the structure of VN 2 (xN 2 rN 2
1 )

can be related to the value of a(l) (that is, to the stability of the

open loop dynamics in form r=l). For sufficiently small a(l), where

(7.113) is satisfied, we have the optimal controller of Figure 7.25. For

larger a(l) (satisfying neither (7.113) nor (7.114))the optimal

controller must hedge-to-a-point with uN 2 orUNI for all x that

are not in the endpieces or middlepiece domains. This is the case

shown in Figure 7.26. For sufficiently unstable a(l) (satisfying (7.114)).

the optimal controller does not hedge-to-a-point until the last possible

time. This is the situation shown in Figure 7.27. For

x 93 (1), (2)) and N2 (3), (4)) the optimal- x-2 (N-2 ( 'N-2 XN-2 N-2 'N-2
+

controller hedges to either xN = o+ or xN = with control uN_1 .

Comparing the large a(l) case for the conflicting goals problem

of this section and the commensurate goals problem of section 7.5.

(that is, comparing Figures 7.18 and 7.27), we observe a basic difference

in the nature of active hedging in these two cases. In both problems,

for large a(1) the optimal controller either

always puts x inside (-0,0)

(the middlepiece)

or

• always puts x outside(-',)

(the endpieces)

or it
" hedges to the advantageous side of a p(1,2:x) discontinuity

at one (and only one) time.
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For the commensurate goal problem, this hedging-to-a-point is immediate,

using u- 2 to drive XN_ to - or -a For the conflicting goals problem,

the optimal controller doesn't hedge-to-a-point until the last possible

time, using uNl to drive XN to CL or -a

It is easy to see that hedging-to-a-point must be done quickly in the

commensurate goals case, since if a(1) is large it tends to drive the

system away from the desirable part of the x axis (with respect to both

the performance and reliability goals). Spending extra control energy

to drive x inside (-c,c) leads to savings in the performance cost at

all future times, and this strategy also reduces the likelihood of the

undesirable form transition (from form 1 to form 2).

In the conflicting goals case, if a(l) is large it causes the system

to move away from the performance goal (i.e., the origin), but it also

tends to drive the system into the advantageous p(l,2:x) piece (or

keeps it there). Hedging-to-a-point decreases the probability of a bad

transition but it results in a much larger operating cost at all future

times (since a(i) is large). Thus it is not desirable to hedge-to-a-

point until there "isn't much future left" - that is, at the terminal

time.

In the remainder of this section we will examine the optimal JLQ

controller for problems satisfying the sufficient condition (7.116)

of Fact 7.11. For these problems we find that at all times (N-k),

the optimal JLQ controller follows the pattern of figure 7.25. This

allows us to obtain a recursive description of VNk(Nk rN k=l) and

UNk (xN-k rN-k=l) at each time (N-k) for this class of conflicting goals

problems.
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A typical VNk (x Nk,rNk =1) curve is shown in figure 7.28. It has

aN-k (1) - 4k+l pieces, and is symmetric about XN-k = 0.

For xNk in the middlepiece (i.e., for 6 Nk(2k)< XNk < 6 Nk(2k + 1))

the optimal controller will result in IXN-k+X' < a for k = 1,2,...k.

That is, the x process will be kept in the high-failure-risk (but low

cost) piece of p(i,2:x) at all future times.

The first piece to the left of the middlepiece (i.e.,

N(2k- 1) Nk < (N (2k))corresponds to using uNk to achieve

~k+1 = -ct . That is, we use the control Ubk to keep XN k+1 out of

the high-risk piece; we hedge to the low risk side of -a. Then at the

next time (for k > 2), the control u-k+l will drive XNk+2 into the

high-risk - low-cost middlepiece. The x process will then be kept

inside (-cL,0 through time N.

The second pieces to the left and right of the middlepice correspond

to having -k+ll > but IxNk+Zl < a for 2,3= ...k without

hedging-to-a-point.

The third pieces of VN-k(xN-k rN-k=l) to the left and right of the

middlepiece correspond to hedging-to-a-point (to -(x or a+) one time

st p in the future; that is, u-k+l is used to obtain I _k+2I = --

" Then the x process is kept inside (-a,a) from time (N-k) + 3 through N.

thIn general the 2m pieces of VN_k(XN-k,rN-k=l) to the left and

right of the middlepiece correspond to never hedging-to-a-point. The

x process will be in a low failure probability piece of p(l,2:x) for

XN-k+l , ... XNk+m and then it will be inside the high failure probability

region (-Ct,Ct) from time (N-k) + m + 1 through time N. Note that the
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2k pieces of VNk (x Nk,rNk =1) to the left and right of XN-k=O are

the endpieces of the optimal cost. For c-k < N-k(1) and

XNk > N k (4k), the optimal controller does not drive the x process
N- N-k

inside the high risk piece (-<X,CL) of p(l,2:k)at any future time.

st
The (2e+l) pieces of VN_k(xN-k,rN-k=l) to the left and right of

,-k = 0 correspond to using uNk+ to hedge to x-k++l - -a or

x ,-k+.+l = cL . Then I XN-k+Z I < CL for Z = m+2,... ,k.

As in the commensurate goals problem of Section 7.5, this class of

conflicting goal problems illustrates that using control to alter

failure probabilities at future times is directly reflected in the

expected cost-to-go. These two example classes motivate a finite-time-

horizon approximation to the infinite time horizon problem (for the

general problem of Chapter 5) that is developed in the next section.

The following Proposition states the general result for the problem

of this section. We again use the shorthand notation of (739)

Proposition 7.12

For the problem of (7.2) - (7.5) with facts 7.1, 7.2, 7.3(2) and

equation (7.116) of fact 7.11 holding, the optimal JLQ controller can

be completely described as follows:

1) The number of pieces of N-k(XNklrNk=l) and uNk(XNk,rNk=l) at

time (*-k) is

mN-k(l) = 4k + 1. (7.118)

2) This number of pieces is the maximum possible. That is, all eligible

candidate cost-to-ge functions (by Proposition 5.2) are optimal over
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some portion of their regions of validity. These eligible

candidate costs are

tU
V t 1,. ..,4k -1 (driving X~1into
N-k '-~

N-k+l W

v~~k1,R ~(hedging to -kl=-

v~k~1iL (hedging to xN k (X C 4

3) V-k(xN-k rN-k=l) and uN-k(xNk r Nk=l) are symmetric about

xN !"0. That is,

VN- (i:l) =VN- (4k + 2 - :)(7.119)

XNkx N-= x

U (~l =u(4k + 2 - ~)(7.120)
uN-k

N-kN-k xN- x

for i -1,2,...,(2k + 1).

4) The closest grid points to zero in the composite XN-k+l partition

are + at. That is,

V.~~ ~ MNk1' Nk1 i =1,... ,2k-2

YNk+ (2k -1) = -t(7.122)

YN-k+l (2k) a

YNk+ ( jk) (j-2) j =2k+,... ,4k-2
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51 The odd-numbered pieces of VNk (X 1rN kl) and uNk (xNk 1NkI )

are given by

VNk(i:l) = XN-k 2 Kk(i:l) (7.123)

uk(i:l) = -L Nk(i:l) XN- k  (7.124)

optimal for

" N k ~~( i - l )  <  - <  -k i

SN-k i-) xN-k < N-k

i = 1,3,5,...,(4k+l)

These costs are optimal for XN-k values where the best strategy is

not to use any of the values -k''' - to hedge-to-a-point.

They include the left endpiece

- Le

VNk (1) = VNk (1:1),

the middlepiece

N-01)) V- (1) = V (2k + 1:1)

and the right-endpiece

V'(1) V (4k + 1:1)
N-k N-k

6) The even-numbered pieces of VNk(Xk rNk=l) and UNk(XN k rN-k=l)

are given by

VN-k(i:l) = XN-k 2 KN-k(i:l) + XN-k HN-k(i:l) + GN-k(i:l) (7.125)

'N-k(i:l) -L N-k(i:l) X-k + F N-k(i:l) (7.126)

optimal for" -" N ~ k~ i ~ l ) < < N k i

N-k " - N-k- i 2,4,6,...,4k
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These costs correspond to actively hedging-to-a-point at one

(and only one) future time. Specifically, at each time (N-k) < N,

and for each i = 1,2,...,k:

V Nk(2i:l) is the cost associated

with using tontrol UN-i to hedge to-a-point. That is, it is the

expected ccst-to-go which results if

* '-k+-i keeps xNk+, < -L

for each 1 < Z < k-i (when k > 2)

and then

* UN-i hedges to xN-i+1

and then

U-k+-l keeps -c < X-k+Z < 0

for each k-i+2 < Z < k (when k > 2).

So V (2k:l) corresponds to hedging-to-a-point immediately
VN-k

(using uk) and VNk (2:1) corresponds to hedging-to-a-point

at the last time (using N-1 )

Similarly for VN ~(j:)) where j 2k + 2, ...,4kthe

optimal controller uses

'N - [4k+2-i]
L 2

to hedge to

J+x O
N -_
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7) The cost-parameters in (7.123) - (7.126) are given recursively

by the following set of coupled difference equations:

In form r=2, for k = N-1, N-2,..., the parameters Kk(1:2 ),

L k(1:2) are specified by (7.49) - (7.51) (as in the analogous

commensurate goal problem of Proposition 7.7))

For k = 1,...,N the middlepiece parameters %-k (2k+l:l),

L (2k+l:l) are given 1 j (7.52) - (7.54),
N-k

Here (2k+1:1) k(1), the upperbound parameter1

For k = 1,2,...,N and i = 1,2,...,2k-1,

_-k (i:l) and L Nk(i:l) are given by (7.55) - (7.58)

for k = 1,2,... ,N the immediate-hedging-to-a-point para-

meters IKNk(2k:l), HN-k (2k:l), LN-k(2k:l) and F N-k (2k:l)

are given by (7.59), (7.60), (7.62) and (7.63), respectively.

Unlike Proposition 7.7, G Nk(2k:l) is given by

2
a2  2G (2k-) -- R(l) + b (1) _k+l( 2 k-1)]J

N-k 2 2(1)
b (1)

(7.127)

for k = 2,3,...,N and i = 2,4,... ,2k-2

the parameter H (i:l), G (i:l) and F (i:l) are given
N-k N-k N-k

by (7.64) - (7.67).

8) By symmetry we have (for each k = 1,2,...,N), for i = ,2,...,2k

the relationships (7.72) - (7.76).

1Unlike the commensurate goals problem of Proposition 7.7, where

( 2k+l:l) = K.k(1) (the lower-bound parameter).
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9) The joining points Nk (i) i = 1,... ,4k} are given by

* for k = 1,2,...,N

( 2 ,

(2k) 1 + () (2k)N-k a(1) R(- N-k+l ( 2

(- _ R(1) + b 2 (1) (2k-1)
2 'KN-k+l

R(1) + b (1) Kk+l(2k)

(7.128)

* for k = 1,2,...,N and i =1,2,...,k

N (1) k-i b() KN-k+Z (2i-1))

N-k (  a(1) 1 + R(1) KNl(2i-1))n{ a(1)

(7.129) .

D for k - 2,3,...,N and i =1,2,...,k-

-- - GN~ (2i : 1

. (2i) -HN-k (2i:l) + k(2i:l) 4 [-k ( G2 (2i:+ )

2(KNk( 2 i:l) - KNk( 2 i+l:l)]

2 R(1) KNk+2i+1)jb (1)- (i + KN_- (2i))[
a(1) R(1) a-i+= a(1)

where Xk (i) is given by (C. 1 6 ,8). (7.130)
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7m

Here we define

9
11=1 if 9 <

t=l

10) At each time k =1,2,... we have the following relationships:

odd-indexed parameters (7.131)

even-indexed parameters (7.132)

3Nk (2i-1:1) < Nk(2i:l) < - (2i+1:1)

1 ,...,k (7.133)

KN k(1) < . N (-k2 1 ) < 1%N (2k+ 1) < % (-k2 K) (7.134)

odd-indexed parameters

A A A

L even-indexed parameters

and
AAL K~k(2k+1) < - (2k+2) *(7.136)

438



Here
LMk  UBKk( 2k+l:l) = () = (1) and

_Le ( LB k I

KNk(l:l) - %- k  % (l)

11) For i - l,i,...,k

Vk(2i:l) > VN(2i-l:l) except
N-k 'N-k

equality at XN-k = Nk (2i-1)

and
N (2i) is the rightmost intersection of
N-k

V (2i:l) and VN(2i+l:l)
N-k VN-k

Proof: The proof of this proposition involves an induction on (N-k),

starting with k=2. The proof is developed in appendix C.16.

For this problem the optimal control law and expected cost-to-go

at each time k = kO,. .. ,N (for any finite time horizon problem) can

be computed recursively from a growing number of difference equations

running backwards in time. As with the commensurate goals problem of

Proposition 7.7, for this conflicting goals problem we need not follow

all the flowchart comparisons and tests of Section 7.2. This problem

thus lends itself to detailed analysis and interpretation.

In particular we can see what each piece of the controller is trying

to accomplish. Refer again to figure 7.28, where a typical VNk( _k~rN~k=l)
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is shown. The middlepiece is the upperbound cQst function VUB (1),
N-k

associated with always having x in the p(l,2:x) region where the pro-

bability of failure is high. The endpieces coincide with the lowerbound

cost function VNk (1), since the controller never drives x into the high

p(l,2:x) region if or k  (4k). The even-numbered

xN-k N-1 rXN-k > N-k

pieces correspond to hedging-to-a-point at successively further times in

the future (as we move away from the middlepiece in figure 7.28), with

successively higher costs being incurred.

In figure 2.29 the optimal control law UNk(xN-k rN-k=l) is shown

for these problems. Note that this control law is discontinuous at the

joining points {6 (i)ji = 2,4,...,2k}, where VN-k(xNk ,r Nk=1) is not
N-kN- NkNk

differentiable. In figure 7.30 the optimal mapping from X-k to X-k+l

(given rN-k = 1) is graphed. There is a region of avoided XN-k+l values

associated with each control law discontinuity. Thus at all times (N-k)

we have the type of behavior illustrated at time (N-i) in Fact 6.10.

Let us now consider the JLQ optimal controller of Proposition 7.12

as the time horizon (N-k) grows large. From (7.118) we see that the

number of pieces of the optimal controller grows without bound as (N-k)

goes to infinity. Thus the exact infinite time horizon optimal controller

is not obtainable precisely via any finite algorithm. However, we can

obtain a description of the Proposition 7.12 controller as (N-k) grows

large which is similar to that given in Proposition 7.8 of the previous

1
section. As (N-k) grows large, many of the controller pieces correspond

to moving the state from one p(l,2:x) piece to another at a time far in

1 describing the Proposition 7.7 controller as (N-k)
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the future. The difference between any of these pieces and the endpiece

cost function becomes small as the time when this change is effected becomes

distant. Consequently the structure of the optimal controller converges

to a steady-state controller which we can approximate with arbitrarily

small error by choosing suitably large (N-k).

The discussion which precedes Proposition 7.8 in Section 7.5 is

applicable here with the exceptions that

4-+-

hedging-to-a-point is to -- and a+ (instead of to -,a and a

* the endpiece cost functions are lower bounds on V (x ,r =1)
N-k N-k N-k

and odd-indexed pieces V (i:l) (i=l,3,5,...) approach VNekl) from
N-kN

aboveI , at each x. The even-indexed pieces V (i:l) (i=2,4,6,...)
N-k

approach it from below.

As in section 7.5, it is easier to discuss the structure of the

limiting optimal controller (as (N-k)-) if we count pieces from the

middlepiece outwards. Using this indexing method (as described prior

to Proposition 7.8 and as shown in figure 7.22), we can summarize the

structure of the limiting controller for the problem of 7.12 as

follows:

Proposition 7.13: For the problem of Proposition 7.12, as (N-k')p..

items (1) - (7) of Proposition 7.8 hold except that (7.90) is replaced

by

instead of from below, as in section 7.5,
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G <+ l>m lim G <+1>
(N-k) N-k -

2 F1 (- (K <0> - Q(1)

b2 (i) [W2 (1:2) + Q(2)) (7.137)

In addition we have the following:

1. As (N-k)- the joining point

Nk<-1> = 6N (2k) converges monotonely to
N-k N-k

6 <-i> = lr Nk<-1>
(N-k) -k

..) + R(- i - 2 2 (K (1:1)+0(2))
: a (l) :"

b~fi~AL+ /W [1~w )(K0 (i:)+Q()

(7.138)

and <+>-06 = -6 <-i>

2. For k=i,2,...,N, for each fixed i e {1,2,... ,k} , the joining

points <-2i> converge monotonely as (N-k)- to

5<-2i), = 0 1 + 2 , (1-W 2 )(Koo< -2 (i+i) > + Q (1)j
0 a(l) R(l)

+ 2 (K (1:2) + Q(2))

(7.139)

and SN-k<2i> 6 00<2i> = -6 00<-2i>
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3. For k = 2,3,...,N for each fixed i e {(.,2,.,. k} the joining

points SNk <-(2i+l)> converge as (N-k)- to

<(2~i > 6 <-(2i+2)>

2. _* <2i2>) 4 [K,<-2i-2> -K<-2i-l>J1w<-2i-2>
(7.140)

2[K,,<-2i-2> - K <-2i-i>]
i and

S <2i+l>* 6 <2i+> <-(2i+)

N-k

4. For the limiting problem solution parameters, as (N-k)- the

following relationships hold:

Le Re(711
(i) K (1) K, (1)<. .. <K <+4> <K <+2> <K <0> <K <+i> (7.141)

(ii) K <+2> <...<K <+3> <K <+1> (7.142)

'.- Oo - 0o - 00 --.

(iii) <-2 (J+i)> <6 <-2i> <6<-2(i-l1> (7.143)

hence

6<2i+i> - 6<2i-i> >0 (7.144)

6 <-(2i+I)- 6<-(2i-l)> >0

Proposition 7.13 says that as the time horizon becomes infinite, the

number of pieces in the optimal controller also becomes infinite but each

piece (counting from the center outwards) converges to a constant steady-

state function that is optimal over a constant steady-state interval of

x values. From figure 7.30 we see that there will be certain steady-state
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- intervals of x values that the system will avoid. From (7.144) we see

i* that the width of the switching regions will grow without bounds as (N-k)

increases. We cannot implement precisely the steady-state JLQ controllers

of Proposition 7.13 and 7.8 using a finite algorithm, because there are

infinitely many controller pieces. However, we can approximate the

steady-state controller by using, at each time (N-k), the true optimal

controller for a certain number of pieces around zero and approximating

the rest of V-k (x -k,r-k =1) by the endpiece functions. This method of
N- Nk N-

approximation is discussed in the next section.

In this section we have examined the structure of the optimal JLQ

controller for a class of problems having conflicting reliability and

performance goals. This problem class has a solution structure that is

p particularly amenable to detailed analysis. Its solution illustrates

the way that the optimal controller uses active hedging to achieve

fault tolerance in this conflicting goals case. The major difference

between this case and the commensurate goals problems of section 7.5 is

the following:

. When the pefromance and reliability goals are commensurate,

the JLQ controller uses hedging-to-a-point to drive the x

process into the advantageous probability region sooner than

the probability region x-independent JLQ controller (of

chapter 3) would.

In the case where these goals are conflicting, the JLQ controller

uses hedging-to-a-point to keep the x process out of the dis-

4 .. advantageous piece for a longer time than the x-independent

JLQ controller (of chapter 3) would.
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7.7 Finite Look-Ahead Approximations of the Optimal JLQ Controller

The solution algorithm flowchart of section 7.2 lets us ob-

tain the optimal JLQ controller for the general problem of chapter 5.

This algorithm is more efficient that the brute force aoproach

used in chapter 5, in that Propositions 5.2 and 5.3 are used to greatly

reduce the number of calculations and comparisons that are needed to obtain

the optimal controller. However, the algorithm of section 7.2 is burden-

some to compute and difficult to implement when the time horizon of the

control problem is large. This is because the number of pieces of the

optimal control law (in each form) grows linearly with the time horizon.

In this section we develop an approximation of the true optimal JLQ

controller that requires less computation and is easier to implement.

This approximation is applicable for any problem in the class that was

formulated in section 5.2.

Our approximation of the optimal JLQ controller for the general

.* class of problems of chapter 5 is motivated by the structures of the

optimal controllers in the special problems that were studied in sections

7.3 - 7.6. We will first develop suboptimal approximations of the

optimal JLQ controller for these problems. Then we will develop a similar

approximation that applies to the general case.

Recall that for the optimal controllers described by Propositions

7.7 and 7.12, the optimal control laws and expected cost-to-go can be

computed off-line, backwards in time via sets of (growing numbers of)

1
as formulated in section 5.2
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recursive difference equations. In Propositions 7.8 and 7.13, the

limiting structures of the optimal controllers for these problems as

the time horizon becomes infinite are specified by (countably) infinite

sets of difference equations. That is, even for these relatively

simple problems, the optimal controller for the infinite time horizon

situation cannot be obtained using a finite algorithm. However, pieces

of the optimal controller (for the controllers of Propositions 7.7, 7.8,

7.12 and 7.13) that are succesively further from the middlepiece are seen

to converge to the controller endpieces (as functions of x). This

suggests a natural approximate controller for these problems: at each

time N-k (k > P, for some fixed specified p), we apply the true optimal

controller when the x process is in the domain of the (4p + 1) pieces

closest to (and including) xNk =0, and we approximate the optimal

controller for other XNk values by the endpiece control laws.

Proposition 7.14 (4p+l piece suboptimal controller):

1. For JLQ problems satisfying the assumptions of Proposition 7.7 or 7.12,

the optimal JLQ controller can be approximated as follows:

For p > 1 fixed,

*at times N-p,...,N-I use the true optimal control laws (if in

form 1):

UN- p (XN- p ,rN =1) ,.,UN_ (7._ 1 , rN. l

(as computed using the algorithm of section 7.2), with expected

cost-to-go

VN-p (xN-pr N-p=I)'''VN-(xN-1'rN-1 l ) ' N (xN rN= l )

448
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Pat times (N-k), for k > p, if rkl

(i) use the middlepiece control law

Uk (2k+1:l) =U (l) if

N-k (k< N-k < N-k(k+1

(i) use

%-~k(2k:l) if 6 S (2k-i) < xN- < 5 - (2k)

uNkN-k XN-k < N-k

(iii) if p > 2 then for i=1,. ..,p-l use

u(2(k-Z):l) if 6 (2(k-9j-l) <x < 3 (2(k-ZD
uNkN-k N-k N-k

~~~(2(kZ)l:) if 8 (2(k-Z)) (2k <)l

uNk(2(k+U+l:l) if 6 N-k (2(k+Z)) < 'XN-k < 6- 2k.)l

'N-k (2(k+Z)+2:l) if 6 S (2(k+Z)+l) < x~N-k < 6N-k (2(k+Z+1))

(iv) use the endpiece controllers

ukl ( = U~(1:l if S (2(k-p))

Re()= uk (4k+1:1) if xN~ > 6 (2 (k-I-p) +1).

2. The resulting suboptimal controller ha-- (4p+l) pieces at all times

(N-k) < (N-p). Let us denote the expected cost-to-go from
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(xNk rNk-l) that corresponds to this approximate controller by

VN k(x rNk=l). It is related to the true optimal JLQ expected

cost to go V (x ,r =1) by
N-k N-k N-k

(i) For problems satisfying the assumptions of Proposition 7.7

commensurate goals):

2- k VNk(N-k'rN-k =l) -N-k(N-k'rN-k = l)

2X - N -_ l l  (7.145)

for xNk outside (Nk(2(k-p)), Nk(2(k+p)+l)).
xMk(N-k 6N-k

(ii) For problems satisfying the assumptions of Proposition 7.12

(conflicting goals):

2
_ k KNk(l:) < VN-k(xN-k N -k) < VN-k(xN-krN-k=l) <

2< XN-k %-k (2 (k-p+l) +i : )

(7.146)

for XN-k outside (6Nk (2(k-p)), 6Nk (2(k+p)+l))

3. Consequently the suboptimality of the approximate controller at

any X-k is bounded by

VN- (-- r- N--k 
1 1

l CN~ 2_k(1.1) - _(2(k-p+l)+1:1) (7.147)

VNk %--k %-k
VN-k(xN-k'rN-k-- 2
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Proof:

This Proposition follows almost immediately from Facts 7.1 - 7.3,

and Propositions 7.7, 7.12. Details are given in Appendix C.17.

The special structure of the JLQ controllers of Propositions 7.12

and 7.7 lets us describe the suboptimality of this time-varying approximate

controller. In Figure 7.31 we illustrate the bounds of (7.145) and (7.146).

Notice that as the controller pieces (of the optimal controller) have

domains further from the middlepiece, they look more and more like the

endpieces. This observation motivates our substitution of the endpiece

control law for those optimal control law pieces that are far from zero

(i.e., outside (Nk( 2k-p), Nk(2(k+p)+l)).
N-k N-k

In Figures 7.32 and 7.33 we show the control laws and N-5 -4

mapping for the optimal JLQ controller and a p - 3 -pproximation, for

an example problem of the type that is addressed by Proposition 7.7.

The solid lines indicate the optimal controller quantities. The

thick, checkered line denotes the p-3 approximation. Note that the p=3

approximation coincides with the optimal solution in figures 7.32 and 7.33

except for

e (1),_(3)) and ( (14), 6N (16))

Ne 6;4 6N-4 an e6N-4 N-46)

By making p larger and larger, we can increase the width of the

interval about the origin where the true optimal controller is used

(for finite time horizon problems, if we make p = N-1 then the approximate

controller is in fact optimal).

hI 451.
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Figure 7.32: optimal JLQ control law and p -3 approximation at

time (N-4) for a problem addressed by Proposition 7.7. The

thick checkered line denotes the approximation and the solid

line indicates the optimal controller.
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In sections 7.5 and 7.6 we saw that for fixed k, we have the

convergence

K(2 (k-P+l) + 1: 1) Le-'~~-k1  (7.148)

as p grows large. Therefore as p is made larger we also reduce the

suboptimality of the approximate controller of Proposition 7.14 at each

XN-k outside 0 N-k (2(k-p) , aNk (2(k+p)+l)). However, the number of

controller pieces that must be calculated and implemented increases

linearly with p. Thus we have a tradeoff between controller suboptimality

and complexity.

The approximation algorithm that is described above results in time-

varying control laws. All 4p+l pieces of the approximate controller

must be computed anew at each time (N-k). We can further simplify the

computational burden of controller determination if we use the 4p+l

closest pieces (to zero) of the steady-state controllers, as given by

Proposition 7.8 and 7.13, instead of the finite time horizon ones.

Proposition 7.15

1. For JLQ problems satisfying the assumptions of Propositions 7.7.,7.8

or 7.12, 7.13, the optimal JLQ controller can be approximated by a

constant suboptimal controller as follows:

(1) In the form r=2 use the steady-state controlle and for p >1

fixed, at all times (N-k);
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m.-

(i) use the steady-state middle-piece control law

uw<O> if 6<-J>< <<>

(ii) use

u,<1> if 60 <I> <xN-k< S<2>

%<-i >  if 6 <-2> <x <6( <-1>
00 N-km

(iii) if p > 2 amd k > 2, then for X =1,...,min(p-l,k-l) use

u <-2Z> if 6 <-(2Z+i)><xN<6 <-2k>

u,<-(29+l)> if 6 <-(29.+2)><x <6 <-(29+ 1)>00 ~ N-k 0

u<21> if 8 <2%> <XNk<6 <2t+l>

(iv) use the steady-state endpiece controllers

u. (1) if 600<-2p> >x -

Re if>
u6 () if 6N-k

(Note: we are using the < > notation, indicating indexing from the

middle outwards, that was introduced in section 7.5 and was used in

Propositions 7.8 and 7.13).

2. At times (N-k) > (N-p) the resulting controller has (4k+l) pieces,

When (N-k) < (N-p), the controller has (4p+l) pieces. As the time

horizon becomes infinite (as N-k) - o), the suboptimality of the

", approximate controller at each x value is bounded by

", J456



1Ki) - K~,<2 (p-1) >I (7.149)

and as p - this error at each x converges to zero, since

lir K <2(p-l)> = KLe (1)

Proof: Immediate from Propositions 7.8, 713 and 7.14. 0

The approximate steady-state controller does not coincide, in general,

with the true optimal JLQ controller at any x value. However, for

large time horizons the steady-state control law pieces (including the

joining points {6 (i)}) do become close to the true optimal. In

addition, bounds like those of Proposition 7.14 hold as (N-k) .

In example 7.2 we compare the controllers and expected performance

of the optimal JLQ controller and both the time-varying and steady-state

approximate controllers.

Example 7.2 (i 7.1, 6.1, 5.1):

Consider the following system having M=2 forms:

n
= if rki=1

'k~l xk + ukn
"k+1 2xk + uk if r k=2

p(l,2:x) - 1/4 IxI<l

3/4 IxI>l

p(1,l:x) = 1-p(1,2:x) p(2 ,2 )=l p(2,1)=O

We seek to minimize

m 'IN- (2 ~2 2• (uI xk+ ) + xN K T(r)
(. N Nk-O
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where K T(1) = 0, K T(2) = 3. The form structure and form transition pro-

bability p(l,2:x) for this example were shown in figure 5.4.

This problem was examined earlier in sections 5.3, 5.5, 6.3 and 7.2.

It is a "Case 1" problem at time (N-i), in the sense of section 6.5.

That is, it satisfies (6.108):

1
(W2-W1 ) (KT(2) + Q(2)) - (KT(1) + Q(l)] =2 [4-1] 3/2 > 0.

The optimal controller in form 1 at time (N-i) is specified by fact 6.9.

This example problem satisfies the assumptions of facts 7.1, 7.2 and

7.3(1): (7.22) becomes 0 < K T(2) = 3 < 3.236068 . For this example

problem, (7.35) is satisfied:

2a(l) = 1< (1 + ( =() (1 + 7/4) = 11/8.
2 R(l) ~N 2

Thus by fact 7.6, we have "situation (1)" of figure 7.16 at time

(N-2). Consequently the optimal controller in form 1 at each time is

specified by Proposition 7.7 and the limiting controller as (N-k)

" is given by Proposition 7.8.

In table 7.5 the optimal JLQ controller parameters are given

for three time steps when the system is in form r=2.

(N-k) lk(l:2) L (1:2) a(2) -b (2) LNk (1:2)
__-k__ N-k -

N 3

N-i 3.2 1.6 .4

N-2 3.231 1.615 .3846

N-3 3.235 1.618 .3824

3.236 1.618 .3820

Table 7.5: Optimal JLQ Controller Parameters in Form r-2

for Example 7.2
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The optimal JLQ controller parameters in form r=l for three time steps

and for the 13 pieces of the steady-state controller closest to zero

are given in Table 7.6 Only the left sides (x < 0) of the controllers
xN-k

are specified since the right-side parameters are obtained by the symmetry
relations of Propositions 7.7, 7.8. Also since LN k(i:l) = K(i:l),

the L Ps are not listed separately.
N-k

Comparing the columns for (N-k) - (N-3) and (N-k) = in Table 7.6,

we see that the values of each parameter {KNk<-i>, HNk<-i>, i=i,...,5}

.are very close. This suggests that the approximation in Proposition 7.15

is a good ane.

Let us compare the performance of the optimal JLQ controller and

the approximate controllers of Propositions 7.14 and 7.15, for a problem

where N=3. This is, of course, a limited calculation that has only

academic importance. But it does provide some insight into the behavior

of the various controllers. From Table 7.6 we see that the optimal

JLQ controller1 is:

(1) Optimal JLQ Controller:

-(.78348)x x <-138.13

-(.78352)x -.00291 -138.13 <x <-54.686o o

-(.7 8347)x -54.686 <x <-32.285
0 0

-(.78600)x O  .05350 -32.285 <x <-15.315

u (xo,rol) = -(.78245)x -15.315 <x <-7.0110
0o 0

-x -1.000 -7.0110 <x <-3.23290 0

-(.6996)x -3.2329 <x <3.2329
0 0

lWe have listed the control laws for x < 0, since the x > 0 laws are

directly obtained by symmetry.
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(N-k) a N N-1 N-2 N-3 -

K. ( 1) %- " +:I)KNkO 0 .6364 .6949 .6996 ."7007

%-k (
2
k: 1) - %.1 4-1> - 1.000 1.000 1.000 1.000000

t.k (2k-1.1 ) . K-k<-
2

> - .7647 .7807 .78245 .7827063

-iNk(
2
k

2  
a k<-3> .7849 .78600 .786190

KNk(
2
k-3.l) . KNk<-4> - .7822 .78347 .7836775

LC (
2
k-4:) - K<-S> - .78352 .7837182

€ .Lak 1:1 )  0 .7647 .7822 .78348 .7836889

".-k (2k;N) -H N.<-I> - 2.0000 2.0000 2.00000 2.000000

%-~k-(2k-2:1) - H Mk,-3> .1075 .10700 .106K49

%-K(2k-4:1) - H-k S> - .00582 .3057804

CNIk (2k:) - G -> - 2.75 3.2773 3.32884 3.3340644

t.(2k-2zl) G -3> - - .6741 .80594 .8201529
N-kN-k,

3m (2k-4:1) - G -k<-> - - - .16848 .2049996

v FNk (2k:1) - F Nkc- I> - -1.0000 -1.0000 -1.0000 -1.00000

FN1k (2k-2:1) : FN.k<-3> - -.05375 -.05350 -.053452

F N
t
s 2k-4;1 )  F N-k<-

5
> - -.00291 -.002890

-k2k) -I N -k - I> - -2.75 -3.2773 -3.23288 -3.3345113

6 Wk(2k-I) -
1
N-k< -2> - -6.7749 -6.9765 -7.00102 -7.0177289

6 (2k-2) - 1-31 - - -12.5375 -15.31494 -15.595679
N-k N-k

6 (2k-3) - k<-4> -31.1791 -32.28468 -32.507589
N-k N-k

4 - -4 4CN-5) S>- -54.68637 -72.108158

d Mk (1) - -6.7749 -31.1991 -138.1297 .FNk (1) 1 5 9 13 -

Table 7.6: Optimal JLQ Controller Parameters in Form r=l,

for Example 7.2
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-(7822)x x < -31.179
11

-(.7849)x - .05375 -31.179 < x < -12.538
11

-(.7807)x 1  -12.538 < x < -6.9765u 1 (Xl, rl=l) =

x1  -1.000 -6.9765 < x < -3.2773

-(.6949)x 1  -3.2773 < x < 3.2773

-(.7647)x 2  x2 < -6.7749

u2 (x2 ,r2 -=1)= -x2  -1.00 -6.7749 < x 2 < -2.75

(.6364)x 2  -2.75 < x < 2.75

The control laws for the suboptimal controllers of Propositions 7.14 and

7.15 for various p values are as follows:

(2) Proposition 7.14 : Controller with p=2

-(.78348)x0 x < -32.285

-(.78600)x O -.05350 -32.285 < x < -15.315

u (x ,ro=l)= -(.78245)x -15.315 < x < -7.0110

-x -1.000 -7.0110 <x < -3.23329
0 0

1-(.6996)x -3.23329< x < 3.233290 0

ul(xl,r 1 =l) and u2 (x 2 ,r 2 =1) as in (1) above.

(3) Proposition 7.14 Controller with p=1

- (. 78348)x °  x0< -7.0110

(x ,ro=1)= -x -1.000 -7.0110 < x < -3.23329

1-(.6996)x -3.23329 <x < 3.23329
0
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C-(.7822)x IxI< -6.9765

u1 (X1, r1=1)= -X1  1.0000 -6.9765 < x< -3.2773

1 1

-(~.6949x -3.2773 < < 3.2773

U 2 (x 2 "r 2=1) as in (1), (2) above.

(4) Proposition 7.15 Controller with p=2

(.78369)x x. < -32.5G76

2. 2.

i I

-(.78619)x. .05345 -32.5076 < x. < -15.5957

2. 2.

u (x r.=l)= /-(.782706)x -15-5957< x. <-7.0177

x 1.0000 -7.0177 < x < -3.3345

(.700659)x -3.3345 < x < 3.3345

for i 0,1.

-(.78369)x x. < -7.0177

2 2

U2 (x21r2=)= x - 1.0000 -7.0177 < x. < -3.3345

-(.700659)x -3.3345 < x. < 3.3345
2  2

and
ui(x.'ri=2) = (-1.618)x. for i-1,2.

*In table 7.7 the expected costs-to-go from (xo,ro=1), for several different

x values, are listed for these four controllers.

Note that the p=2 controller (1) obtains the same performance as

the optimal (when rounded for four digits). The p=l controller does

almost as well. Thus for this example, the (4p+l) - piece controllers

of Proposition 7.14 perform well despite their simplicity (relative to

41
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the optimal controller). Note also that using the steady-state control

laws in (4) does not seriously degrade performance (compare with (2),

%. which has the same number of pieces).

x -200 -100 -20 .10 -5 -1

controller (1) 31340 7835 313.1 78.25. 18.33 .6996
(optimal)

controller (2) 31340 7835 313.1 78.25 18.33 .6996
p=2

controller (3) 31340 7835 313.2 78.28 18.33 .7087
p=l

controller (4) 31340 7835 313.1 78.25 18.33 .7024
p=2
steady-state

Table 7.7: Expected Costs-to-go from (xo,ro=l) for

Different Controllers in Example 7.2 (entries

rounded to four places).

It is important to note that it is the special structure of the JLQ

problems which are addressed by Propositions 7.7, 7.8, 7.12 and 7.13

that enables us to implement the approximate controllers denoted above.

We are able to obtain the controller pieces that are required by the

approximate controllers of Propositions 7.14, 7.15 without using the

algorithm of section 7.2 for these special problems.

For the general class of problems of Chapter 5, the optimal JLQ

controller will not have the nice structure of the problems of sections

7.5 and 7.6. We will not be able to compute only the (4p+l) closest

pieces to zero of the optimal controller. However, the approximations

that we used above can be interpreted in a way that suggests an alternate
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suboptimal approximate controller that is applicable to the general

problem class. This alternate controller does not coincide with the

controllers in Propositions 7.14, 7.15. It does not assume the special

problem structure possessed by the problems of Sections 7.3 - 7.6.

In figures 7.19 and 7.28 we saw that the cost-to-go pieces that

correspond to changing the transition probability pieces that x is in

at far future times tend to look alike. That is, using the control

to change transition probability pieces at times further and further in

the future has less and less effect. In particular, the expected

costs of such strategies became close to the endpiece costs (ie., of

never changing the transition probability pieces that x is in).

One interpretation of the time-varying controller of Proposition 7.14

is that it is a rinite look-ahead approximation of the controllers in

Propositions 7.7 and 7.12. It assumes that the transition probability

pieces that the x process is located in will either change in the next

p time steps, or not at all. The approximate controller ignores

1
eventualities that might occur beyond a fixed planning time. Ignoring

the far future, optimality is lost but the computational burden of

determining and the complexity of implementing the resulting controller

is greatly reduced.

In the remainder of this section we present and demonstrate a

general p-step (finite) look ahead approximation to the optimal JLQ

controller, that is obtained directly from p iterations of the algorithm

in section 7.2 and from the endpiece computations of Proposition 6.1.

This p-stap look ahead controller is the optimal controller for a different

1 with respect to the p(l,2:x) piece that x will be in,
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problem than the true one.

The true optimal JLQ controller minimizes

f'N-i1

2XN-k+ +1 Q(rN-k++l)

x~k+ S(rk

N-k + -~~
VNk(xN krNk) = E +

P(r-Nk+Z+l

+

2uN k-oS, (r N-k+z )

+VN(xN, rN)

for k > 1 where

VN(x,r) - x 2  (x) + X IT(r) + GT(r).

The p-step look ahead controller that will be derived in Proposition

7.16 is the optimal solution of the control problem:

-l 2
x Q(r

N-k+t+l N-k+Z+l

+

2 -k+z+l S(rN-k+Z+l)
+

VN k(xNkrNk) = E P(rNk++l)

'N-k,..,N-k+-N
+

2
UN-+ R(rNk )

VN(N-k+p"N-k+pl

for k > 1. That is, we only consider costs p times in the future and
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we charge the terminal cost at time N-k+p. At times (N-p), (-p-l),..., (N-i)

the controllers are the same for both problems. At all other times we

use the uP control law instead of the true problem optimal control

'N-k"

The performance of this p-step look ahead controller and of the true

JLQ controller can be bounded by the solutions of two other, different

control problems.

Proposition 7.16 (p step Look-Ahead Controllers):

1. For any JLQ problem as formulated in (5.1) - (5.6) of section 5.2,

the optimal JLQ controller can be approximated as follows:

for p > 1 fixed,

.at times (N-p) ,... *-I) use the true optimal control laws

-aN.p (XNprN.p=J) ,... ,UN_ 1 (XNl, rN-1 =J)

for each form j e M ; these laws are computed using the

algorithm of section 7.2.

at all times (N-k) for k > p, use the control law

N-p (xN-k' tN-k-J)

for each j e M

2. For k > p, this control law applied at time (N-k) has a fixed number,

mpj) of pieces (for each j e M). These control laws need only be
i'-p

*°,. calculated once. Let is denote the expected cost-to-go from (xNk rN k)

that corresponds to this approximate controller by VNk(xNk,rN k).

It is related to the true optimal JLQ expected cost-to-go, VNk (xN k rNkh
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L?x ~r =j) AVk (xk srk). N k(x kr )A v ,P (x kr. =j)

(7.150)
for each j 6 m

where V (xLPkj is the solution of the problem

2
x Q(r'N-k+t+1 N-k+Z+1))

XN-k+241) sr N-k++l)

VLP~ (xk 1rNkj E +

N-kZ N-t.

(7.151)

n-kUP N-k N-j) is the solution of the problem

2

-2 xN-k+t+l S(r Nk+9,+l

xj- min P (rN -k N-k rN-kj N-K4A.+1

kno 2
UNk4Z ~Nk4)

+ VT x N-~- rT Nk~pI 'N-k.p-I

(7.152)
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where

2 2
a (r )R(r )xVTx r N-k+p-1 N-k+p-1 N-k+p-l

(XN-k+p-l, N-k+p-1 = 2
b (rN-k+p-1

+

N

E EP(r,)Ix = 01Z_-p

+

E{GT(rN) IxN = 0} (7.153)

3. Consequently the suboptimality incurred by using the approximate

controller instead of the optimal one is bounded as follows:

NVNkk
N(XN-k  N k  - L ,P N-k I N k )

..v (x ,r rV (p
*1 N-k N-k N-k ( Nk)-

(7.154)

Proof: See Appendix C.18.

Note that V (xN-krNk) in (7.151) is the optimal expected cost

for a problem where no costs are incurred after time (N-p). The cost

*'v"E(xNkrNk) can be computed using p-steps of the algorithm of

section 7.2, if we set the terminal costs to zero:

KT(i) = HT(j) = GT(j) = 0, v j e M

This cost will nost exceed the optimal expected cost-to-go from (xkr

for the true problem (since in the true problem VNp (x Np,r Np) > 0).
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The upperbound cost function V N~k(xNk' rNk) in (7.152) corresponds

to the true problem with the added constraint that x be driven to zero

in p steps, and that x be kept at zero thereafter. This problems's

solution will exceed the optimal expected cost-to-go of the true problem

because of the extra constraint. The first term in (7.153) is the
22-k+p-i R(r Nk+pI) cost that results from driving xN-k+p to zero. The

second and third terms are costs incurred by keeping x at zero. Note

that they are zero for the problems discussed in chapter 6.

We conclude this section with an example that demonstrates the use of

the section 7.2 algorithm for a more general problem than those of chapt. 6

and that illustrates the application of the preceding proposition.

Example 7.3

Consider a system whose form structure is as shown in figure 7.34.

This system might represent the following situation:

rk = 1 normal operation

rk = 2 degraded operation (repairable failure)

rk = 3 nonrepairable failure

p(l,2:x) one-step probability of repairable

failure occurrence (x-dependent)

p(2,1) one-step probability of repair

. p(l,3:x) one-step probability of nonrepairable

system failure occurrence.

The form transition probabilities from rk=1 are piecewise constant in x

(but p(2 ,1), p(2,2) and p(3,3) are x-independent).
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0211)C P2,2)

Figure 7.34: Form Structure for Example 7.3. Form rl =Normal Opera-

tion, r=-Degraded Operation, r-3=System Failure (Same

as Example 5.2.)
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(.89 .1 .01) if Ixl < 1

(pO.,l:x) p(l,2:x) p(1,3:x))= (.7 .2 .1 ) if i<Ixl < 2

p(2,1)=p( 2 , 2 )= 5 ((0 .2 .8 ) if x > 2

Thus the numbers of pieces in each of the form transition probabilities

are

V11  V12

. = 3
12

921 = 22 = '23 = 31 ='32 \)33 =1

The x-dependent transition probabilities are shown in figure 7.35,

The dynamic equations of this system are:

'k+l Xk + uk in form r=l (normal operation)

+l !Xk + in form r=2 (degraded operation)

X+i Xk in form r=3 (system failure)

That is, b(l) = 1 b(2) = 1/2 b(3) = 0

a(l) = a(2) = a(3) =1

The cost-parameters are

Q(1) = Q(2) = 1

Q(3) = 0

R(1) = 2

R(2) = R(3) = 1

KT() = KT(2) = KT( 3) = 0

G T(3) 1000 (penalty for system failure)
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p( 1.1 :x)

Xl(3) - .89 .
X1 1(2)=-7 X1 1 1() )=.8

) 11)=0 ! 1(5)=0

-2 -1 1 2 xk+ 1

v1 1(1) a11(2) v1 1 (3) a1 1 (4)

(a)

p(1, 2:x)
(1 2 1) = .2 (p (3)=.212 X (2) .1I2

12 1

-1 1

Xk+1
v (1) (2)

(b)

X13( 1). 8  Lp( 1,3:x) X 13((5)=. 8

X 1 4) 2.k17S.3(2) =.l1; 13( =
= .01

-2 -1 1 2 Xk+ 1ui31) u1(2) u1(3) u1(4)

(c)

Figure 7.35: Piecewise-Constant Form Transition Probabilities from

Form r -1 in Example 7.3; (a) p(l,lzx) with vll=5

Pieces, (b) p(l,2=x) with V12'3 Pieces, (c) p(l,3=x)

with 13= 5 Pieces
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Note that we are willing to spend more control energy when the system is

in a degraded mode than when it is operating normally.

Clearly we have at all (N-k)

VN-k(XN-k,rN-k =
3) = 1000.

'N-k (xNk rNk=3 ) = 0.

If the nonrepairable failure occurs (that is, if we enter form 3), then

we are charged G T(3) = 1000 regardless of what we do. The optimal strategy

is to shut the system off (set u=O).

Using the algorithm of section 7.2 we can compute the optimal controllers

in forms r=l and 2, backwards in time. We find that at time k = (N-i), the

numbers of pieces of the optimal JLQ controllers in each form are

'N-1L) = 5 N_2-1 1 mN-l (3) =

In form rN-1 =2,

2V (x r =2) = .8XN1

N-1 N-i N-1 -

_i(xN, rNl2) =-.4 xN-

UN-1N-lrN- = N-8

XN (xN_l,rN-l=2) -.8

The controller in form rN ll is summarized by table 7.8 below.
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tO:" VN. (x .,Z _IC1,. x ,r I-U~ xH (x,.,r -UL

for- Ni Ni - - N _ N _1N-

2
'-i -21.934 .1

8 18 2
)' .i 800 -(.09091)x N 1  t. 90909) XN-L

21.9344 %-1 -1.49S N .42_14 .._ 1.99 " i -x,_

1.495 -i' 1.495 .621 2 10 31) - (.6689)xN-1

1.495 < -i. < 21.934 2x -4xN-i 122.99 -X'N. L .

21.934 (.
1
6
1 8 2

x i 82 0 ~* 9 1 1
' (.90909)'N

+ Bo 0

Table 7.8: Optimal Controller at time k = N-i in form rN-'I,

for example 7.3.

In form rN 1=1 the optimal controller actively hedges-to-a-point for

* certain xN_ 1 values. Specifically, from (xN-llrN-l=l) the optimal controller

drives IxNI > 2 for IxN-l > 21.934

". * hedges-to-a-point, obtaining

XN = 1+  for -21.934 < N 1  -1.495

XN= 1 for 1.495 < XN_ 1 < 21.934

drives IXNI < 1 for INl I < 1.495.

The optimal controller from (xN_I,r =1) avoids the values in the
NiN-i

intervals (-19.93999, -1) and (1,19.9399).

Note that the controller completely avoids the intervals (-2,-l) and

(1,2) where the one-step probabilities of normal operation and nonrepair-

1
able failure take intermediate values . Either the controller resigns

"See figure 7.35
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itself to failure of some kind (for Ix I > 21.934) or it forces the
N-1

system into the region of xN-1 values where the probabilities of both

nonrepairable and repairable failures are lowest.

If the repairable actuator failure has already occurred (that is,

r Nl=2), then the system is equally likely to be in forms 1 or 2 at the

next time regardless of the control that is applied. Thus the single-

piece structure of N-I(xNIrN-I=2 ) results. Another way of viewing

this is as follows: when r N1=2, the conditional cost VN(x (rN-1=2)
N-N

has no discontinuities and therefore there is no hedging-to-a-point from

Cl~rN_2 --l). Since V (xNJrN_-2) has only one piece, the same control

law is used for all xN- 1 when rN-1=
2. Thus there is no region of avoided

xN values from (xNI,rN 1=2).

Using the algorithm of section 7.2 again, we find that at time

k = (N-2), the numbers of pieces 'f the optimal controller are

mN 2 (1) = 5 m2(2) --5 N 2 (3 ) = 1.

In form rN_2 =l we have the controller that is summarized in table 7.9.

for V_(x N rN 2 = uN_2(xN_2rN-2=1) XN (XN_2,rN=1)
VN-2 N-21  -2N2,NNl xl(N2 -

XN 2 < -22.630 (.30508)x2 +800 -(.15254)x (.84746)xN_2
N-2 N-

-22.630 < < -1.8297 2x 2+4x +22.559 -N ++

xN- N-2 N-2 xN~-2 -1- -
-1.8297 < xN 2 < 1.8297 (.90691)x 2+18.9 -(.45346)xN2 (.54654)x

SN-2 N-2

1.8297 < xN 2 < 22.630 2x -4x +22.55 -_x + 1 1
N2N-2 N-2 N-2 -

22.630 < x (.3050 8)xN2 + 800 -(.15254)xN2 (.847 46)xN2

Table 7.9: Optimal Controller at time k = N-2 in form

rN2=, for example 7.3
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In form rN 2=1 the optimal controller does the following:

* keeps Ix I > 19.1803 if Ix I < -22.630
N-1 N-2

* hedges-to-a-point, obtaining

1+
XN = 1 for -22.630 < x < -1.8297

XNi = 1 1.8297 < x < 22.630

keeps IXN-11 < 1 and

IxNI ( 1 if ixN 2 I < 1.8297

The optimal controller from (x ,r =1) avoids (-19.1803,-i) and
N-2' N-2

(1,19.1803). Thus as at time k = N-1, the optimal controller from

r =1 completely avoids the intermediate-level failure risk regions

(-2,-i) and (1,2).

In table 7.10 the optimal controller from rN 2=2 is summarized.

Here the optimal controller does not hedge-to-a-point with U
N- 2

since VNI(xN lirN-2=2) has no discontinuities. However, there are

intervals of avoided XN-1 values:

(-23.607123, - 20.41)

(20.41, 23.607123)
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for vN(Xi.C
2
) tx 2~2cNr), aN.(.i r, .2)":'_." _I_-2 N,-2_,-2

"
' "%-2 4_-2'4N,-2"_'_ N._-1 ",% -2' .4-2

"

<31.406! (1. 3861)%~r0 '(. 54305 tn)~

-32.406 N_2 <3.4428 (
t
1 2'1.*.5)XN-2 ' .845. -t.7S)x -. 3125 625XN I1625

N-

-3.4428 %- 2 <3.4428 ( .20a2)%_ 2 + 5 (.64411)xN- 2  (.697945)xN- 2
N

2 '' 2 N F - -
3.4428 < <32.406 1.5) _ 2-1.2SN%-2+5.845 I- (.7)S%_2 .3125 C(.625 ) 2'.15625

. 0861) . +40 -4(.54305)x.t, i72
8

4
8

)XNZ

* Table 7.10: Optimal controller at time k = N-2 in

form rN- 3 1, for example 7.3

for VN3CX. 1) (X-r. 1NN- 3 N3- . ,
N- -3. N-3' ZN-2(-3"N-3

X N -3 39.800 (.34521)xZ.j+80 (.8274x ' -

-39.8001( -23.156! (A4)x2(.2)N3801.16 -.2 x.N - 82(3 -.05

-23.156<%c C-1.95901 2X 2 +4x + 31.2390 -
N-IN-3 N-I N-3

2 2[ql"-1 9
S

9
OZN)13 < 1.9590O (.9790O6)xN 1+27.321. .(.489531xN_ (.5107x_

1.9. o < 23.156 2 3 
4
U 3 31.2390 _ "

23.156 <xa 39. 800 1 4 K - -.2 i2X1~ 2 3* 05

2
39.800 tN3 (

34 521
)%_ 3 j (.17260)x -

Table 7.11: Optimal Controller at time k - (N-3) in

form rN- 3 = I, for example 7.3

t

• " 4 7 7



Using the algorithm of section 7.2 once again, we find that at

time k = (N-3):

( ) = 7 t- 3 (2) = 9 m_ 3 (3) = 1.

In form rN_ 3 =i, the optimal controller is given in table 7.11.

In form rN 3=1 the optimal controller hedges-to-a-point for

123.1561 < x 3 11.9501. The optimal controller avoids the intervals

of )-2 values:

(-32.93052, -31.89) (31.89, 32,93052)

(-18.5748, -1 ) (1, 18.5748)

Once again, the optimal controller in form 1 avoids the regions of x

values that correspond to an intermediate level of failure risk.

The optimal controller from r N3=2 is given in table 7.12. As

before, the optimal controller form (xN_3 ,rN_3=2). does not hedge-to-a-

point. The regions of x values that are avoided by the optimal JLQ

controller from (xN 3 ,rN 3=
2) are

(-32.962, -31.8608) (31.8608, 32.962)

(-24.1187, -21.2383) (21.2383, 24.1187)

We will compare the performance of the optimal controller above

to that of a p = 1 step look-ahead suboptimal controller. As sec-

ified by Proposition 7.16, the p=l step look-ahead controller uses

the optimal controller of time k=(N-l) at all times. In table 7.13

we compare the expected cost-to-go achieved by the optimal controller

and the p=l suboptimal for a N-3 time step problem.
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. .. - • . - ." ' ' . . - . ] - . . , , . , . - .. . . . . i

+1 +5 +20 +40

0

Optimal expected
cost from r = 1 28.3001 61.239 751.239 1432.34

0

p=l suboptimal
expected cost 28.4229 61.2765 751.2765 1465.57
from r = 1

0

optimal expected 13.3087 47.0015 634.666 2448.85
cost from r =20

p=l suboptimal
expected cost 13.4635 52.8952 740.795 2611.25
from r =2

0

suboptimality .1228 .0375 .0375 33.33
of p=l controller (0.43%) (0.06%) (0.005%) (2.33%)
from r I

0

suboptimality .1548 5.8937 106.129 162.4
of p = 1 (1.157%) (12.54%) (16.72%) (6.63%)
controller
from r =2

0

Table 7.13: Optimal Expected Costs Obtained by
the Optimal and p=l Look-ahead controllers.
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The suboptimal controller performs well at each x value when
0

the system begins in r 1 1. This is because in form 1 the p=l sub-
0

optimal controller can hedge-to-a-point. In form 2 the p=l controller

has a single control law; thus the suboptimal controller cannot

hedge-to-a-point until the system is repaired (that is, until it leaves

form r=2). Despite this fact the pwl controller performs well for

r =2.
0

In this section we have presented and illustrated 
via examples

certain suboptimal approximations to the optimal JLO controller. 
We

first developed an approximate controller for the single-form 
trans-

ition control problems that were described in Propositions 7.7,7.8,7.12

and 7.13. Then a p-step look-ahead controller was described in

Proposition 7.16. This p-step suboptimal controller is applicable

*i for the general class of JLQ problems of chapter 5.
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7.8 Summary of Part III

In part III (chapters 5, 6 and 7) we have considered scalar JLO con-

trol problems that involve state-dependent structural changes. This class

of nonlinear stochastic control problems yields controller designs which

endow systems with fault-tolerance, in that the controller takes into ac-

count known system limitations and failure likelihoods so as to achieve

the best tradeoff between system reliability and performance goals. The

optimal controller attempts to minimize the cost incurred by the usual LO

regulator action, and by driving the system state to regions where the

likelihoods of undesirable form shifts are reduced, We have formulated

and solved a class of scalar-in-x, noiseless JLO problems with x-dynamics

that would be linear, if not for random x-dependent jumping Darameters.

These problems possess form transition probabilities that depend upon x

- in a piecewise-constant way. For this class of problems we have deve-

loped a procedure that calculates the optimal expected costs-to-go and

control laws "off-line", in advance of system operation. The procedure

determines the optimal controller inductively, backwards in time (for fi-

nite time-horizon problems).

The basic idea of the solution procedure is simple, and the solu-

tion structure is conceptually straightforward. However, the notation

that is required to describe the solution becomes quite complex. Essen-

tially, the nonlinearity of the system dynamics (due to the x-dependence

of the form transition probabilities) is converted into computational com-

plexity in the determination of the controller. At each time the optimal

controller is obtained by calculating and comparing growing number of

quadratic functions. These auadratic functions are computed via Riccati-
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like difference equations. It is the piecewise-constant structure of the

form transition probabilities that allows us to do this. In chapter 5 the

general problem under consideration was formulated and one stage of a simple

problem was solved from first principles. Guided by intuition gained fro-

this example, a general one-stage solution procedure was developed in sec-

*tion 5.4. We established that the optimal control laws are piecewise-
1 0

linear in x (with x , x terms) and the optimal expected costs-to-go are
2 1 0

piecewise-quadratic in x (with x , x , x terms). The different control-

ler pieces arise from using the control to actively hedge. Intuitively,

at each stage the optimal controller must take into account what the ex-

pected cost of driving x into different regions will be, where different

values of the form transition probabilities apply. As the control problem

is solved backwards in time (using dynamic programming), the controller

must take into account what the effects of active hedging will be at the

intervening times. The number of pieces of the controller grows addi-

tively. This additive increase depends upon the number of different forms

into which the system can change (from its current one) and the number of

pieces in the relevant piecewise-constant-in-x transition probabilities.

Thus theze is a tradeoff between the accuracy of the modeling of failure

probability state-dependence (via piecewise-constant approximations)

versus the computational burden of control law determination and the com-

plexity of the controller. In chapter 5 we also identified several basic

qualitative properties of the optimal JLO controller. These included

hedging-to-a-point, regions of avoidances and the endpieces and middle-

pieces of the expected costs-to-go and control laws.

In chapter 6 we investigated these properties in detail. In oarti-

cular we examined the behavior of the optimal control laws and expected
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costs-to-qo when x is far from zero ("endpieces") and when x is near zero

2 (("middlepieces")2 . Over these regions of x values, Vk (xkrk=J) can be co--

puted from sets of recursive difference equations.

The equations specifying these endpieces are middlepieces of the opti-

mal controller are the same as those that solve certain corresponding x-in-

dependent JLQ problems (as in chapter 3). Upper and lower bounds on the

expected optimal cost-to-go when x is between these endpiece and middle-

2piece domains were also obtained 2 . In chanter 7 we used the combinatoric

properties established in chapter 5 and the results of chapter 6 to con-

struct an algorithm for the efficient computation of the optimal controlle-.

This algorithm was presented in flowchart form and described in detail.

The basic idea is to compute the optimal cost function Vk (xk rk=j) at time

stage k (and in each form j) one piece at a time, starti.ng on the left

(with the left end-piece). Using Propositions 5.2 and 5.3, the number of

. calculations and computations that this solution algorithm must make is

greatly reduced from those of the "brute force" solution technique in

chapter 5. This solution algorithm (developed in section 7.2) is appli-

cable to all problems satisfying the requirements of Proposition 5.1. The

class of JLQ problems addressed by Proposition 5.1 is extremely rich. The

resulting optimal controllers can exhibit a wide variety of qualitative be-

haviors. Analytical characterizations of these JLQ controllers that are

sufficiently general to encompass the entire problem class tend to be unin-

formative, since so many diverse behaviors must be simultaneously consi-

dered. We chose, therefore, to focus our attention on problems that lend

For all problems of chanter 5.

2 1 o
For problems with purely quadratic costs (no x and xk terms)
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insight into the kinds of qualitative JLQ controller behaviors that are

appropriate in fault-tolerant control applications. Our vehicle for doing

this was the single form-transition oroblem that was developed in sections

6.5 and 6.6 and specialized to two archetypical problems in sections 7.3-

7.6. In one of these classes the two goals of high performance and high

reliability are commensurate. In the other class they are at cross pur-

pose. We examined the parametric dependence of the hedging regions,

regions of avoidance, stability properties, and local minima in the ex-

pected costs-to-go for these controllers. Under certain assumptions for

algorithm of section 7.2 reduces to the solution of (increasingly many)

sets of difference equations as N-k increases. This makes these problems

amenable to further detailed analysis, and it lets us illustrate some of

the controller properties and qualitative issues that arise from the use

of control to achieve both reliability and performance goals.

For the general problem of Part III, as the time horizon of the pro-

blem becomes infinite the number of pieces in the optimal controller be-

comes infinite. That is, the optimal infinite time-horizon problem can-

not be obtained by any finite algorithm. For the two problem classes of

sections 7.5 and 7.6 we could analyze the infinite time horizon behavior

of the controller and obtain the optimal steady-state controllers as

(N-k)--Qo, since the optimal controller at each time can be obtained from

the solution of increasingly many difference equations without making the

comparisons and tests in the solution alqorithm (of section 7.2) that are

needed in general.

The steady-state solutions that are obtained for these two problem

classes exhibit a structure that suggests a "natural" approximation to the

steady-state optimal controller (both for these oroble"- and the general
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class of problems in Chapter 5). These approximations correspond to

"finite look-ahead" controllers which ignore eventualities that might occur

beyond some fixed planning time. By ignoring the far future, optimality

is lost in these controllers but the computational burden of determining

them and the complexity (and cost) of their implementation is reduced.

This finite look-ahead controller was developed in section 7.7.

In conclusion, in this part of the thesis we have formulated and

solved a class of nonlinear discrete-time stochastic control Problems. The

optimal controller is obtained recursively, backwards in time, by an algo-

rithm which was presented in flowchart form. Less complex but suboptimal

approximations of this optimal controller were also presented. For spe-

- . cial classes of these problems, the optimal controller algorithm collapses

to a set of recursive difference equations. These special Problems are

(3examined in detail. In the next part of this thesis we will extend the

results of Part III to address more general problems than those of

chapter 5.
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PART IV

EXTENSIONS TO THE SCALAR

X-DEPENDENT NOISELESS JLQ PROBLEM
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. .. V

8. THE JUMP LINEAR PIECEWISE-QUADRATIC CONTROL PROBLEM

8.1 Introduction

In this part of the thesis we extend the range of control

problems for which the methods of Parts II and III are applicable.

In this chapter we modify the scalar JLQ problem of chapters 5-7

to include a more general class of x-operating and terminal costs.

Specifically, we consider x operating costs Q( xk,r.) and terminal

2 1
costs T~(xN,rN) that are piecewise -quaaratLc in x (with x , x

and x terms); these nonnegative costs may have constant pieces,

linear pieces and quadratic pieces that are concave-up >

or concave-down 2Q< 0).3

We call this the jump linear piecewise quadratic (JLPQ) control

problem. Our study of this class of problems is motivated by two

factors:

The solution of the JLPQ control problem is a

necessary step in the extension of the JLQ

solution to systems having additive input noise

and more general x-dependent form transition

probabilities; we will use the results of this

chapter in Chapter 9.

The JLPQ formulation broadens the range of

problems that can be addressed by the

methodology of Part III.
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In particular, the JLPQ formulation includes x-operating costs

that are

constant in x

eg: Q(x,j) = 100

piecewise-constant in x with discontinuities

eg: Q(x,j) [10 xl> 10

0 lxl< 10

*"piecewise-quadratic in x with concave-down

pieces

2 lxi >.5

eg: Q(x,j) -x -x -.5<x<O

-x2 +X O<x<. 5

Example problems with these kinds of x costs will be examined S

in this chapter.

The basic structure of the optimal controllers for the

JLPQ problem is similar to those for the JLQ problems. The

optimal expected costs-to-go are piecewise-quadratic and the

control laws are piecewise-linear in xk, in each form. The

derivation of the JLPQ solution uses the same idea that was used

in Chapter 5:

We break up the JLPQ problem into constrained

subproblems that are easier to solve, and then

we compare these subproblem solutions to deter-

mine the optimal controller.
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At each time step k, the control problem involving the search

for Vk(,xkrk=j) is transformed into the comparison of many cons-

trained -in-+ 1 JLQ control problems with x-independent form trans-

itions and quadratic x-costs. One such constrained problem arises

over each interval of xk+l values having

constant form transition probabilities

P(ji;xk+l) (Vi 3 C.)J

a quadratic expected cost-to-go (with

2 1 0
xk+i' xk+l and k+l terms),

V (x ,r =i) for all iEC.
k+l k+l k+l

a quadratic x-cost (with k+l

and 0+i terms) , Q(xk+l,rk+l=i) for all ic Cj

The number of costs-to-go that must be compared at each stage,

and the number of pieces, mk(j), in the optimal expected cost-to-go

V (x ,r =j) may grow at a faster than linear rate with the
k+l k+l k+l

number of form transition probabiJlity pieces and x-cost pieces

(unlike the JLQ problem of Chapter 5). The "piecewise" structure

of the optimal expected costs-to-go and control laws for the JLPQ

problems of this chapter is caused by both
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the piecewise-constant nature of the form

transition probabilities (as in Chapters

5-7).

and

the piecewise-quadratic nature of the

x-costs.

We develop in this chapter a recursive procedure for the

determination of the optimal expected costs-to-go and control laws

when the system is in each form. This procedure can be done off-

line, in advance of system operation. It is carried out by

pursuing a sequence of computations and comparisons that are des-

cribed in a flowchart. This solution procedure is a generalization

of the algorithm of section 7.2. Certain modifications are neces-

sitated by the qualitative controller properties which result from

the piecewise nature of the x-costs Q(xk+lrk+l) and QT(xN rN).

Although the basic idea of this chapter is simple, the

deviation and presentation of the general result involves un-

avoidably complicated notation and "bookkeeping" problems. For this

reason this chapter has been organized as follows:

1. In Section 8.2 the general JLPQ problem is formulated.

2. In Section 8.3 we solve for the last-stage controller

for four JLPQ control problem examples, and we

we compare these results.
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3. Guided by the intuition gained from these examples,

a general one-step solution procedure is developed

in Section 8.4. We state and prove Proposition 8.1

which is a generalization (to JLPQ problems) of

Proposition 5.1.

4. In Section 8.5 we establish a number of qualitative

properties of the JLPQ controller (essentially

generalization of the results of Chapters5 and 6).

These results are then used to develop the solution

algorithm, which is presented in the flowcharts of

figures 8.5-8.12.

5. In Section 8.6 we illustrate the use of this algorithm

by solving for the k-(N-2) controller for the problem

of example 8.2.

From the study of the optimal JLPQ controllers developed here

we can gain additional insight into the structures of controllers

that use active hedging, and into the qualitative effects of their

control actions. The algorithm of Section 8.5 provides the basis

for the approximate solution of the scalar JLPC (jump-linear-

piecewise-convex) control problems of the next chapter. These

problems have x-costs, form transition probabilities and additive

input noise densities that are piecewise-convex or concave in x. They

can be solved approximately using the algorithm of section 8.5 and

certain approximations motivated by the qualitative results of

this chapter.

492



8.2 JLPQ Problem Formulation

In this section we formulate the jump linear piecewise quadratic

(JLPQ) control problem that is addressed in this chapter. As in

Part III, we restrict our attention to the time-invariant case so as

to simplify notation somewhat. All of the results of this chapter

can be directly extended to the time-varying case.

Consider the discrete-time jump linear system

k+i = a(rk)xk + b(rk)Uk (8.1)

P{rk+l=jIrki xk+l=x} p(i,j;x) (8.2)

x(k) =x r(k r
0 0 0

Each transition probability p(i,j;%) of the form process is as-

sumed to be piecewise-constant in x, having a finite number of pieces

V... That is, the real line is partitioned into v.. disjoint inter-

vals with the transition probabilities taking constant values over

each interval:

p(ij;x) = ij (s) (8.3)

if

V.i (s-l) < x <V.. (s) (8.4)

where
s =1,2p,..., ij

S .(0) < V..M <... < V, (V. -1)< ') ( 0. .
i] ij 3 4j i3
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pj7

The grid points v.. (s) may be different for each pair (i,j)e MxM.

For all s=l,2,...,V..,

X. (S)> 0 for each i,j e M
1]

M
SX..(s)=l for each i e M.

j=l '3

We assume (as in Part III) that the state (xrk) is perfectly

observed at each k. The problem is to find the optimal control

laws.

--. -,

that minimize the cost criterion

N-1 lu kR(r k) Q(xk+lr k+j

x0 ,r0 1 = E k=kSk0 + QT(XNrN) (8.5)

where the expectation is over {r ... ,r
k 0 N

As in the JLQ problems, of Chapters 5-7 we assume that the

penalty on the control magnitude is quadratic. It is assumed that

R(j)> 0 for each j e M * (8.6)
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The x-operating costs Q(x,j) and terminal costs QT(Xlj) make

*the above problem formulation more general than in Part III. We

*assume here that for each j e M, Q(x,j) and QT(X' j) are piecewise-

quadratic functions having pand flpieces, respectively:

Q(x,j) Q tWx + S (tx + P (t)

if (t-l)< x <]A (t) (8.7)-

Q T(x'j) Kr(t) xN + H ~)N+GT()

(8.8)

if ~(t-1) < x <n (t)

t=l,....-

- We also assume that

Q(x,j)>

- Note that (8.9) requires that the endpiece x-costs have

for all j M.
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The term Q T(xN rN) in (8.5) is a terminal cost changed in addition to the

time-invariant x-operating cost Q(x r Since { (xrk) : k = k 0  N)

is a Markov process we need only consider feedback laws of the type

Uk = k (xk'rk)"

Defining the expected cost-to-go Vk(xk,rk) as before and applying

dynamic programming from finite terminal k=N, we have the relationship

( x
2X l rk1

V(x,r =min u R(r) + E k (8.10)

kxk' k kkI j ,+,

for k=N-l,N-2,. ..,k

whereVN(xNrN=j) 
= (r=1

with

raN(j) = -j

and

( t) =n~ ) tl..n'-
N

from which we can (in principle) solve for the optimal controls

*UNlI ••
k0

In the next section we will solve the last stage control problem

(k=N-l) for several example problems that satisfy (8.1)-(8.10).
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8.3 Several JLPQ Examples

In this section we examine several example problems that satisfy

(8.1)-(8.10). we solve for the last-stage optimal controller (i.e.,

at time k=N-1) for these examples from first principles. These

*I controllers are then analyzed and compared. They will provide insight

regarding the solution of the general JLPQ problem later in this

chapter. All of the examples of this section are variations of the

following control problem: consider a system with M=2 forms where

(normal +1 xk + if r=l
operation) (8.11)

(failure) xk+ 1 
= xk if r=2

1/4 IxI< 1
p(l,2:x) (8.12)

3/4 Ijx> 1

p(1,1:x) l-p(l,2:x) p(2,2)=l p(2,1)=O.

We seek to minimize

(N-1
min E 1 2+Q(xk+l rk+l)] + Q (rN,r)] (8.13)

(kko T N Nu0 .... ,UN_1

where

Q(Xk+l,rk+l= 2 ) = 0

QT(XN rN=2 ) = 1000 (8.14)

QT(xN rN=l) = 0

r497



S

and Q(xk+l,rk+l=l) is piecewise-quadratic in xkl and satisfies

Q(+l~rk+l=l)>. 0 at each x. In this problem, if the system fails

(jumps into form r=2), it stays there. There is no repair possible.

In form r=2 the value of x does not change; a terminal penalty

of QT(XNrN=2 )=1000 is incurred. Clearly in form r-=2,

Vk(xkrk=2) = 1000

Uk(xk =rk2) = 0 (8.15)
k1

at all times. That is, if the system fails then the optimal strategy

is to turn it off (by settir.g u=0).

In this section we will consider four different piecewise-quadratic

x-costs, Q(x+l,r k+l=l). Recall that the conditional expected cost-to-go,
-V N V(x NirN-l=l1) is defined by:

xN

VN (xNirNll) = E Q(xN~rN) +9 V(x,r) rNll , (8.16)

which for (8.1l)-(8.15) is given by

VN xNrN-l) = p(1,1:xN)[Q(xNrN)] (8.17)

+

p(l,2:x N )1000

VN(xNIr_=1) is a piecewise-quadratic function of x having
N N N-1 N

4N pieces:

498



V (xNIr 11) = VN t) = xNN(t) + XN N(t) + GN^ (t)

for xN CA (t) = (Y (t-i),Y (t))
N N N

Our task is to find the UN_ 1 value, as a function of XN- l , which

minimizes

VNi( l~r 1=1) = min u + (xNIr l=1)-1- u N-1 N
N-1

ru2 2()
rain Mn N-1 +X K (t)+x N N(t)

t=l,.. ,s UN s . t.

XNe Nt

min VN-1 (xN-l rNl=l I t) (8.19)
t=l,.. ,s

In (8.19) we are following the basic idea of Part III:

We convert the control problem (8.1l)-(8.15) into the

comparison (for each xN l of the solutions of a set of

constrained-in-xN JLQ subproblems. Each subproblem

corresponds to driving x. into one of the domains AN(t)

of the VN(xNIrN_1=1) pieces (as in (8.18)).

We begin with a single one-piece concave upwards quadratic x-cost.

This problem is solvable by the algorithm of Section 7.2. We present

it here for comparison with-the other examples of this section.
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Example 8.1:

2

Let Q(x,r) = x (8.20)

Applying the algorithm of Section 7.2 to the last stage (k=N-1)

of (8.1l)-(8.19), we find that

2
(.25)x + 750 if x <-1

n N

N (xN Ir N-1= 1)  (.75)x2 + 350 if -l<xN <1

(.25)x + 750 if 1 < x
N N

That is, N=3 and
N=

• AN(1) = (- ,-i)
N

AN(2) = (-1,1)

N

A N (3) (1,00)

in (8.18). This conditional cost function is discontinuous at

x=+.

The optimal controller from (x Nl,r N=1l) is specified by

1
Table 8.1 and shown in Figure 8.1.

in Figure 8.1 and all of the graphs of this chapter, the scales are
distorted so that the behavior of the functions at joining points is

highlighted.

50



V Zt. LSD

X -16231 -t~s 1.7 U .131

zS.23S

5. z5

-ZC.3e .?S .75L6.2S ( ~ 6-L LIS 26!238X

-- 20.99

Figure 8.1: Q(x,r=l) and k-(N-l) Solution for Example 8.1. Not

Drawn to Scale so as to Emphasize Behavior at Joining

Points
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if V (x r =1) U (x r -1) x (x , rN=)
N-i1 N-il N-i1 N-1 N-i, N-i N N-i' N-i

2
XN-i<-26 .23 8  (.2)x + 750 -. SN 8x

N-1i- N-i

<--26.238 xN1 1.75 xN- +2xN 1 +251.73 -XN_ 1 -i
+  -1

-1.75 <X <l1. 7 5 (.4285)x2 +250 -.4285 x .57143xN
N1N-i N-1 N-143

2
i.75< xN<+26.38 x -2x +251.73 -XN+. 1-

N-1 N-i N-i N-i

26.38 < N-1  .2X2 +750 -.2x_ .8_x
XN-i+ N-i1 N-1

TABLE 8.1: Optimal controller from (xN_l,rN_l l) in Example 8.1.

Let us recall the following general properties of this class of

JLQ problems that were established in Chapter 5 and are illustrated

by this example:

1. VNI (xN1, rNI=I) is piecewise-quadratic in xN-1 and

uN- 1 (x Nl,r Nl=l) and the optimal mappings

xN(xN I rN-1=l) are piecewise-linear. (Proposition 5.1)

2. V (x ,r =1) is continuous in xN. Between joining
N-i N-i N-i N-i'

points its slope is continuous. At joining points the

slopes is either continuous (as at xN_1  6 (2)= -1.75)
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or else the slope of VN 1 (XN- ,r N1=1) decreases

discontinuously (as at x,, =  U1 (1) -26.238 and

XNi = Nl(4) = 26.238). (Proposition 5.1)
N1 N-1

3. The optimal control law UN_ 1 (XNI,rN_=I) is a continuous

nonincreasing function of XN_1 except at joining points

where VNl (xN lrNl=I) has a discontinuous-slope; at

such points (xN +26.238 in Example 8.1), the control

law increases discontinously. (Proposition 5.3).

4. The optimal controller can hedge-to-a-point only to the

low cost side of a VN (xN rt.l=1) discontinuity. These

* . arise from form transition probability discontinuities.

°. In example 8.1 these arex N = -+ l-

xN

(Proposition 5.2).

5. The mapping

is monotonely nondecreasing. It consists of five line

segments:

a segment with positive slope in each region

of xN values where an "unconstrained" cost

(driving xN into the interior of one of the

: VN̂ (xIr, 1= 1 ) piece domains) is optimal.
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a constant line segment for each xN 1

region from which there is hedging-to-a-

point

-26.238 <x -1.75 XN= -1+

+1.75 <XN-l< 26.238 xN = 1 /
in example 8.1.

(Proposition 5.3)

6. There are regions of xN avoidance associated with (and

only with) each joining point where the slope of

VN_1 (xN I , r N-=1) decreases discontinuously. These are

(-20.9904,-1) and (1,20.9904) in example 8.1.

(Proposition 5.3). .

0 qWe will now present examples of the problem t8Ji)-(8.18) where not

all of the above facts will hold, due to the structure of the

x-cost Q(x rN ).N N

Example 8.2: (Hedging to discontinuities of the x-cost Q(x,r))

Let the x-cost be piecewise-constant in x:

100 Ix k+l > .5
Q~xk+ki
k+1=1 )  (8.21)

o Ixk+iI S
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This cost is shown in Figure 8.2(a). The control problem (8.11)-

(8.15), (8.21) corresponds to a situation where we want the x process

to be inside a certain interval (i.e., inside (-.5,.5)), and we

penalize equally any x value outside of the desired interval.

The conditional expected cost-to-go in (8.18) for this problem

is

775 if N -

N N1325 if -1 < x<-.5
V(x irN..i N

250 if -.5 < x < .5 (8.22)

I N
325 if 5 < N <1

775 if 1 < XN

Solving the first of the constrained subproblems in (8.19) we obtain

the following:

for xN e AN(1) = (-(,-)) , C".
NN

VNi (x N- Ir N l) min N-1 + 775) (8.23)

N-1

s.t x <-1
N

Differentiating VN_ with respect to U and setting to zero, we
VN-l WN-i

find that (8.23) is minimized by U N-=0 with resulting cost VN 1=775

if XN = XN 1 <-l. If, however, we have xN~l> 1 then the constraint

in (8.23) is active. Since

2VN I (xN I , r N1=I  )
>0 for any fixed XNi
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we minimize (8.23) for xN-l<-i by driving xN to -1-, using

control
UN_ =-N-

u- -Xj

and attaining cost

2
VNl XN 1 +2xN_ + 776.

We can solve each of the constrained subproblems of (8.23) in a

similar way, obtaining the following:

Vl'U = 775 if xN 1<-i
N-i Ni N~ iii N-1

N-(X N-,r N= v1,R x2 +2x +776 if x >-i
N-i N-i N-1

with

UNXUf 'U = 0if X&1<-iu N-1 (xN-l' rN-l= II )  ---- N 1 -
-iul' U -XN-i -1 if x >-i

N-1 N-i

V xN 2 +2x +N1+326 if x N-1<-1

VN -1 (xNli N1=12) V2,v = 325 if -i<x < - .5

V2 ,R  X2 1+X +325.25 if -.5< i

N-i N-i XN-i

2,L 1+  if

uN - N if -I<x <-.5

2 ,U if -.5<XNi

2,R1

N-i1 N-i
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and

( 3,L = 2SX +X +250.25 if xN<-.5

N-i (xN-i rN-1l if3,u

. 20 if -.5<x <.5
;" 3 , R 2

v = N-iXN-1+250.25 if .5<xN-1

Bthsymt ofte iue, f 5 i X < .5

-N-i -

V-"CXN-iu 0 if -. 5<x N-l<.5
;q 3  ,L

U _ N-1N + .5- if .< -

UNi xN2,rN 1 l• =5u<iXNN_ 1N~=ii

oiuBy the syfretry of the problem, for each x ad b

VN (xN lrN 1 4) =VN l-xN 1r~ll2)

V N-1(x N-1 r N-1=115 ) =VNI(-XNI. rN_I=11I).

U N-1 (X-l'rN-1ml l 4) = -u N_1 (-XN- l , rN-l=l 12)

U N-1 (X N_1 ' r N _1
=1 15) = N-N1 (-x N-1 , r Ni=i 11)

Performing the comparison in (8.19) at each xN_ we obtain the

I Wk solution for the last time stage Of this example, as listed in Table 8.2

and shown in Figure 8.2.
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Q (x,r'-,> V Cx+. r";,

VI J v s,u

73,U Y3.

. -1..413 -. 9 .5 24, 411 H.1

"~1A (,.. rx =I ) Ax,(XN.,r 1,)
N-I N-I N-I M N-1 N-I

23.41 /
22 .91

-\.-4- - 24413 -. s 5 10.41s Xi

/-Z4.413..5a2

/!
1,]

Figure 8.2: Q(x,r=l) and k=(N-l) Solution for Example 8.2

(Not Drawn to Scale)
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if V N - I (XN- r N-1l=) UN-1 (xN-l' r lN-1l) XN (XN-l' rN-1=)

X <-23.413 775 0 X
XN-1 N-i1

-23.413 < <-.5 x +x +250.25 -xN +--.
XN-i1 N-i xN-i N-i

-.5<x <.5 250 0 X
N-i N-i

2
.5<x <23.413 x 2 -X +250.25 -x +.5

N-i N-i N-i N-i .

2 3 .413 <XN 775 0
XN- 1

TABLE 8.2: Optimal controller from (x ,r =1) in Example 8.2.
N-i' N-i

For small IXNl (IxN_l <.5) the optimal controller spends no control C.-

to move the x process, since it is already in the domain where

Q(x,r=l)=0. For large IxNxl (IXN-iI> 23.413) the optimal control is

also zero. For 23.413>IXN-1 >.5 however, the optimal strategy is to

exert control so as to drive xN inside the lowest V N(x Nr N=1)

interval in (8.22).

Note that it is never optimal in this example to drive xN into the

intervals ((-l,-.5) and (.5.1)) where the Q(x,r=l) cost is high but the

failure probability p(1,2:x) is low.

Comparing examples 8.1 and 8.2 we note that:

* The optimal controller hedges to the points xN -.5, .5 in

example 8.2.

50q

-. -.. . . . - / %- . . .



These values of xN are discontinuities of V(x IrN 1) in (8.22).

NN N-l1  i 82)

However the optimal hedging is not to form transition probability

discontinuity locations but, rather, to discontinuities of the

x-cost Q(x,r=l) .

* The mapping XN x_ 1 (x N-1,rN1 =1) is once again mono-

tonely nondecreasing. The regions of xN avoidance for example 8.2

are

(-23.413,-.5),(5, 23.413).

As in Example 8.1, each region of avoidance is associated with a joining

point of VN_ (xNl trN_=) where the slope decreases discontinuously.

In Section 8.6 the optimal controller at time k=-(N-2) will be obtained

Wfor this example using the solution algorithm that is developed in

Section 8.5.

The next example x-cost that we will examine involves quadratic

pieces that are concave-up as well as concave down. This leads to a

controller that has somewhat different qualitative properties than

those that we have examined previously. In particular, the following

example shows that for the JLPQ controllers of this chapter,

active hedging-to-a-point can occur to

points other than conditional cost,

Vk (xIrkl=j), discontinuities.
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Example 8.3: (x-operating cost having concave-down quadratic pieces)

Let Qxlrl)be as follows:

Xk2  Xk.5 0.

Q(klr+= _xk+l xkl .5xk+lO

_xk ~ ~ ~ 0 'klxk+l<

2 .
xk~l 'k~

(8.24)

This cost is shown in Figure 8.3(a). Note that the inner two

pieces are concave-down.

The conditional expected cost-to-go for the problem (8.11)-

(8.15), (8.24) from form r Il is

(.25)x 2 + 750 xN< -1
NN

2 1(.75)x N+ 250 1<xN < -.5

VN(N N-1 (.75)[-x 2_x J+ 250 -. 5<x < .0
N N N (8.25)

(.75)-x 2 + 250 .5C <~

2

(.25)x + 750 1 < xN
NN

We note in passing that that VN(Nrl) is continuous at

xN .5 and XN~ It is discontinuous at =+1
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Note that V (x Nr =1) is not diffirentiate at any of its ,
N N N-I1 ______

joining points in (8.25) (i.e., at +1, +.5, 0).

Solving the constrained subproblems in (8.19) we obtain the

following:

=, 2

V(rU  2 2 + 750 XN i<-l. 2 5

V N-iN Nr i--i) N-vL N

SXNI+ 2x + 751.25 -1.25<XN_

Ju -<-1.25

U N 1  IxN_ l,r N_ 1= 11 1)  = , 1 -- 1 2 <N-iuL = -- N-125<xN- 1

and

v2 xNI l+2x N1 1+251.7286 x N1 75
_N- _il N-1 2,U "

VNi xNIrNl 2) =4285x +250 -1.75<x <-.875

V _+X +250.4372 -. 875<XN-i

N- N -1 N-i

I 2,L <-1.75
u -N-1 xN-1

u (x ,r =12) = 2,U 4285 1-75<XN<-875

N-i N-i N- u 428xNJ N-1

u2,R -x 5 -. 8 7 5<XNI

N-I N-1
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By the symmetry of the problem, for each XN-1

VNXN 1 (Nlr N-1=iI6) V N- (-x N-i'rN-312

ii (x r =(x r 12

'N-1 Nl,_,r,_1iI6) -uNl(-xNlr Nl1=1 1)

For xN6A(3) and x e A (4), however, the associated subproblems
N N N N

are different than any we have examined here previously. Specifically,

V (x jr =1) is concave-down over A (3) and A (4). Consider the
N N N-i N N

*constrained subproblem Vi (x ir i 1I3):

22 7x

VN-i (x N-. 'r Nl1=13) = min u - -. 75xN Nj *X
U s t.
N-i1 + 250
.5<x <0

N (8.26)

Differentiating with respect to ui and setting to zero we find

.7 that (8.26) is minimized by

Ui =3x +1.50
N1 N-1i

2V (xN_,,r 1i3)
(since 2N- UN 1= = > o).The resulting cost is

2V =3x -3x + 249.4375
N- I N-i N-i

,-
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This solution is only valid, however, if the constraint in (8.26)

* is inactive. That is, if the resulting xN satisfies

.5 < =N4x + 1.5< 0,

which is the case when -. 5<x <375. otherwise, we must drive
XN-i -

to the best xN value in (-.5,0). Note that for each fixed xN~ value,

we can write (8.26) as a minimization over X- values in (-.5,0):

V =13) in 1)2-.75x - 75x +250
-.5<x<O N N-i N N

2 2
- min {(.25)x +(-2x - 75)x + Cx +250)1
-. 5<x <0 N N-i N N-i

N

0 Since

(aN2V (x ,r =113) .25 > 0

(3x~ 2 N-i N-i1 N-i

the optimal strategy is to

make +~. if xN<i .5

.makex = if -.375 <
N 0 N-i

Consequently we obtain

V +xN +250.43 7 5 <XN-i

XN-l -1 x- 7<X..

"N1(x 'rN=113) -x_3xN-+249.4375 -. 5<xN- -.375

N- N- N-i_ 1 N-i.35 N-
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3,L 5+
u -N1 - ' 5 XN -  5

UNl (xNr = u3,U 3xN-+. 50 -.5<xN-1<-.3 75

3,R -. 37 5 <xN-1

and, by the symmetry of the problem,

N-i (xN-l rN-l= 13) VNl( - xN- 1,rN-l =l4)

UN_ (XNi 'rN = I13) = -UNi (-xN 1 rNl114)

Performing the comparison in (8.19) for the six constrained sub-

problem solutions (at each xN-1l we obtain the last time-stage solu-

tion of this example, as listed in Table 8.3 and shown in Figure 8.3.

In Figure 8.3(b) we see that, as in earlier examples, the optimal

cost VNI (xNl,rNl=1) is piecewise-quadratic in XN I . This example

differs from those considered earlier in that some of these pieces

have 2 VNli/(xNl) < 0

The only nondifferentiable points of V (x ,rN) are at xN= +26.238.
N-1 N-i, N-i N-i -

At the other joining points of VNl(xNIr_=1),
N-1 -1,N-1i

+1.5 at xN= + 1.75
VN (xNr =1)
N-1N- N-i

+.75 at xNl= + .875

0 at xNl = +.5

+.75 at x N - = +.375

At x '' +.5, VN (x N_1,rN- =1) has inflection points.

N-iN
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* - .§f~.. -... , -+

887.7

75O--

- . -2..- 1.7 u 5..-.137

zs.3
1,61. V4,& .

.72. - ''"

V1 6. V 4U

m DO. -

2" -. 75 .

25..X3s r4.. N-all ~ r "

.75- 2f,-2

F- 7sr25. 47 "7S12.

Figure_8.3: Q(x,r=l) and k=(N-1) Solution for Exam~ple 8.3
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if V (X ,r ) U (X r ) X (x ,r i)
'N-i q-i, N-i N-1 V-i, N-i= N N-i' N-I

2r

x N_ <-26.238 .2x2 1+750 -" 2XN-1 .8xN-1

2 + +
-26.238<xN-1<-i. 75 xN_1+2xN-1+ 251.7 3  -XN-1 + -

2
-1.75<xN- < - .8 "5 .4 2 8 5x21+ 250 -.4285xN 1  .5 715xN 1

-.85+_< .5x2N I+N+250.44 -XN -. 5 -. 5

2-.5<x <-.375 -3X -3x +249.44 3XN+. 5 N-
N-1 N-i N-i N-1 x +.

-375<x1<.5 -3x 2  +3xN+249.44 3xN-i 5 4xN-1.5
N- N-i 1 - N-i1-

2

.S5<XNl <.8 7 5 XNil-XNil2 50.4 4  -XNl+. 5 .5 9*

.875<x N-1<1.75 .4285x2_ 1+250 -.4285xN_1  .5715 XN 1

i.75<xNI< 26.238 x2I-2xNi+251.73 -xNi+1 1-
2i

+6.238< .2 - 2x2 +750 - 8x
N-1 N- 1 N-i N-i

TABLE 8.3: Optimal controller from (x Nl,r N1=1) in

Example 8.3.
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As in earlier examples, the optimal control law is a piecewise-

linear function of X-l" The control law in example 8.3 does not

decrease between all joining points (unlike examples 8.1, 8.2 and

any problem in Chapters 5-7 with b(j), a(j)> 0). The slope of

u (x ,r =1) is positive in the intervals (-.5,-.375) and (.375,.5)
N-i N-i' N-li

but negative everywhere else it exists (see Figure 8.3(c)).

The optimal controller in example 8.3 hedges to the points

+
x N=-l1 x N=-. 5, xN .5 x N~l and x N=O. Two of these values

(xN=-l 1) are hedging to the low cost side of a VN(xNJrN_=1) dis-
VN xNN _11

continuity, as in previously studied examples.

However, VN(x NIrN-=1) is not discontinuous at XN=+.5 and x,=0,
N=0

yet we hedge to these values. From (8.25) note that x N=+.5, 0 are

the boundaries of VN(XNlrN-l=l) Pieces that are concave. Necessary

" conditions for hedging-to-a-point will be stated in Section 8.5

(corollary 8.3) .

As in example 8.1 and 8.2, we see from Figure 8.3(d) that the

mapping

x (x ,r 1)
XN- 1  N N-i , N-i1=

is monotonely nondecreasing. Note that the regions of avoidance

(-20.99,-i) and (1,20.99)

are associated once again with xN_1 values when the slope of

V (x ,r =1) decreases discontinuously (i.e., at x =+26.230).N-1 N-i' N-i' N-
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There are no regions of x avoidance associated with hedging to

xN = +.5 or XN=O.

The next example illustrates additional issues that the modified

solution algorithm must cope with in solving the JLPQ problems of

this chapter.

Example 8.4: (Subproblem with no unconstrained minimum)

Let the x-cost be piecewise-quadratic in x with concave-up

endpieces:

2
k+l Xk<-.5

e( +l'rk+l: I ) = -2x +l-1.5,+ 1  .<+l

-2x4+1+l.5xk+ 1  0~ <Xl< . 5 {
k+l

2

Xk+1 .5 <xk+l (8.27)

This cost is shown in Figure 8.4(a). The conditional expected cost-

to-go for the problem (8.1l)-(8.15), (8.27) from form rNl=l is
<--1

(.25)x +750 xN<-l

(.75)x 2+250 -l<x <-.5
N (XNI rN ) =2N

(.75) [-2x -I.5x 1+250 -. S<
N N Y

(.75) [- 2 x2N+ 15xN]+ 2 5 0 0<XN<.

(.75)x 2+250 N5<xN<1
NN

(.25)x 2+750 N<x (8.28)
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For IXNI >.5, VN(XNrNI=I) in (8.28) is the same as that of example

8.3 in (8.25). As in the last example, VN(x Ir =1) is continuous at
N N N-i

XN= +.5 and at xN=O. It is discontinuous at XN= +1. As in Example

8.2, VN(xNIrN_1=I) is not differentiable at XN= +l, +.5, 0.

Solving the constrained subproblems in (8.19) we obtain the same

VN-I (xNIrrNlI=1t) for t=1,2,5,6 as in Example 8.2:

( V 2 +750 x <-1.25
I N--. N-i

V (_x r -1
N- N- N- v1 ,L 2

vI' = XN- +2xN-l+ 7 5 1 .25 N>-1.25

V  x +2-x +251.7286 x <-1.75

N- - N-i
VN N -l , N 1 =112) v = .4285x 1+250 -1.75<x <-.875

V2 R = X2N +XN +250".4375 -. 875<xN_

N-i N-i N-i

and

VN_ 1 (XNIrN lIi) = VN_ (-xN lrN l lI6)

VN1 (xN- l ' rN-1=i12) = vN- (- xN-lrN1 = I 5 )

Consider now the constrained subproblem VN(x ( lrNll13):

V ( ,r =11) ( 2 2
N-i~~ N- - r ~+. 7 5 (-2  1i.5x

V N-1(x N-l' rN~-113) = mrin N u-1+'5- N-lSNi

UN- + 250 (8.29)

-. 5<XN<0
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Differentiating twice with respect to uN- we obtain

av (xN_,r N-i

N-i N-1i 2u + (75) (-2) (x +u
'U- N- 1 N-i N-i

+ (.75) (-1.5) (8.30)

2N- CxN~i ,rN1=13
~ -i 2 ~iI3 =2-4(.75) =-1 < 0(8.31)

aV (xN ,rN_=13
N-iNiNi13

Thus for u 1 such that auX=0 we obtain a

maximum instead of a minimum For a fixed xN .value, we can rewrite

(8.29) as
2

V~~~~~ (x-~i3 m~XNx) + 250

NiNi-.5<XN<0 + (.75)('-2x 2-15 (8.32)
N ~~ x~i xN

5x 2m _~ (2x 1.i25)xN

-.5<xN <0 +[ 2 +20
+xN-1i20

Since

V (x ,r 1=i) =-1 <0 (8.33)

(a) 2 N-1 N-i N-i

the optimal choice of xN inside A (3)-(-.5,0) is on a boundary
N N

(either xN=-.5  or x N=o) for every x Ni*
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If we make XN=*5 + we will use control

UN~ X i -. (8.34)

and incur cost

v~i XN-1+X N-+ 2 5 .4 3 7 5

If we make x N=O we will use control

3,R

and incur cost

v3 F 2 + 250. (8.35)I

From (8.34)-(8.35) we see that

V3, (x ,r v3 ,R N- 1r~=)

N-1Nl 1

Consequently we obtain

3L 2
v x N1+x N1+250 4375 if x N1<-.4375

N-il N-i N-i rN

v N- ~iI) =I Ni+250 if x <-.37

N-1 N-1

-x 5 + if xN <-47

uN-i - -1- - if x N-1>-.4 3 7 5
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3, U 3,1.U
We don't list V and u (the inactive constraint cost and control)

since they do not solve (8.29) for any xN-1 . By the symmetry of the

problem,

VN-l(xN-lrN-l=13) = VN-l(-xN-lrN-ll4)

U (xrN=3) = -u (-xN, =114)
N-1 (N-i rN-i H-1 N-i, N-1

Note that

V3 L (xNl'rN = ) = V2  (xN_l ,rNl1= )

3,R 4,L
V ( -l' rN-1= ) =V (xN- 'rN-1= l )

v4 ,R V5 ,L Cx l'
N-i (xNlrN1= ) = (N- N-i=

This is because (as we noted before) VN (x Ir 1) is continuous at

xN = +.5, 0. Performing the comparison of subproblem solutions in

(8.19) for the six problems here, we obtain the last time-stage solution

for this example. This solution is listed in Table 8.4 and shown in

Figure 8.4.

Comparing the results of Examples8.3 and 8.4 we see that

1. Examples 8.3 and 8.4 have the same solution

at k=(N-l) except for .375<IxN_i<.5

3,U
2. In Example 8.3 the cost V _I(xN_I,r N 1)-V in

N- 1 - N-i

.375<IxNlI<.5 is concave down (Figure 8.3(b)).

In Example 8.4 this cost piece of VN-.(XN-l,rN-1= 1) is missing.

The adjacent cost pieces V2,R and V3,L are
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213

'U

V-4 ,1L 5SL.
_ _ _ _ _ _ _ V R

-2LI -or~ .43S .4375 .25 LIS21 -

.437S s
.31s
*-* 6. 1.8 7 S 2". -f1 -7 35 4

-. 71 -65 -3 6 2 -

Figure 8.4:. Q(x,r-l) and k-(N-1) Solution for Example 8.4.
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if V (x ,r =1) u (xN ,rN ,=1) x (x ,r l
N-i N-i1 N-N- N- N- N N-i' N-i

xNl<2 6 .2 3 8  .2x 2 +750 -.2xi .8x
N-1 N- N-i

-26.238<x <-1.75 x 2+2x +251.73 -xN1 -i+ -1i
XN-i< N-i N-1 -

-1.75<XNlI<-. 8 7 5 .4 28 5x N 21+ 250 -.4 2 8 5 xN-1 *57 l5xNi1

2.437 <- .4375 x +25x-.85xN-i N-i N--25.4 x .

2
-.4375< <.875 x -x2 25.4 -x 0

N- N N-N- N-i

.4375<x <1.875 .x 2X +250.4 -x4+5 N-
N- N-N Ni-1~

2N-1xN-

<1.7 +50 N-i85 .57x2. 8 <xi N-i85

N-1~N- N-iN1 -

525



Fgr .optimal over (-.375,-.5). Cost V3,U is missing in
Figure 8.4(b) because it is never valid.

Here

2 (3)

(auN_)2

hence the constraint in (8.29) is always active.

3. In Example 8.4 we have two additional

regions of xN avoidance;

(-.5,0) and (0,.5)

Although it is optimal to drive x to

exactly zero for IXN-l <.4375, it is

never optimal to place x near zero.N
In the above examples of JLPQ problems, the last-stage controllers

exhibit certain qualitative behaviors that are not manifested by the

JLQ problems of Part III. These aspects of the JLPQ controller must be

accounted for in the development of a solution algorithm. We list them

here for convenience:

1. Hedging need not only be to form transition probability

discontinuities in JLPQ problems. It can be to conditional
A

cost Vk(xklrk_) discontinuities that arise from x-cost

discontinuities in Q(xk,rk) or QT(xN ,r N). (Example 8.2)

2. Hedging-to-a-point can occur to points that are not dis-

continuities of the conditional cost V(x Ir ). However,
V kk k-l

these points are the boundaries of Vk(xkJrkl) pieces that

are concave down. (Examples 8.3,8.4).
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3. The optimal control law uk(xk rk-j) may be discontinuous

at xk values where the optimal cost Vk (Xk rk=j) is dif-

ferentiable. (Examples 8.3,8.4).

4. Hedging-to-a-point X=x can occur without an accompanying

region of X avoidance (example 8.3).

5. Regions of X avoidance are associated with (and only with)

S-i values where uk_ is discontinuous (i.e., where

Vk-l (xk_lrk-1=l) is not differentiable). Thus there is no

region of avoidance associated with hedging to a continuousA

point of Vk(xkhrk-l=l). (Example 8.3,8.4).

6. In some instances, the constrained subproblem

Vk k It),corresponding to driving xk+ into Ak+ (t)

where Vk+ l (x k+ l lrk =j) is concave down in Ak+l(t), may

result in a subproblem controller that never drives x+i

into the interior of W+l(t), for any xk value.

(Example 8.4, but not example 8.3).

In the next section we will solve the general JLPQ control problem

(of Section 8.2) for one time-stage. This result will then be used

in Section 8.5 to construct a solution algorithm for these problems.

The examples of this chapter will provide insight regarding how the

solution algorithm of Chapter 7 must be altered for JLPQ problems.
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8.4 One Stage Solution of the JLPQ Problem

In this section we use intuition gained from the example problems

of the last section to solve the optimal control problem of Section 8.2

for one time stage. As we indicated earlier, the notation and "book-

keeping" becomes quite complex, but the basic idea is the same as

illustrated in the previous section. Inductive application of the one

stage solution (backwards in time from finite terminal time N) then

establishes that the solution of problem (8.1)-(8.10) yields optimal

expected costs-to-go that are piecewise-quadratic in x and optimal

control law that are piecewise-linear, for all forms j e M

Vk (x,rkj) = xK(t:j) + xkH(t:j) + Gk(t:j) (8.36)

uk(k,rk=j) -Lk(t:j)x k + Fk(t:j) (8.37)

when

k(t-l)< xk <6

where

6kj ( 1 < 6j ( 2 ) < . . . < 6J j)l

k k kic~j

are the points where the pieces of Vk (x,j) are joined together (the

boundaries of the x. intervals) and

k k(m5(j))8

528



- .. . . - . - .

The proof of the one-stage optimal controller result is cons-

tructive. It suggests an algorithm for the recursive determination

of the optimal expected costs-to-go and control laws for this problem.

An efficient algorithm for this determination of the optimal controller

(8.36)-(8.37) is presented in flowchart form in Section 8.5.

The one-stage solution result is as follows:

- Proposition 8.1: (One Stage Solution)

Consider the problem (8.1)-(8.10). If at time k+l, for each

rk+l = j 6 M we have

(i) Vkl(x+lrk+lj) is piecewise-quadratic with

mk+l(j) pieces joined continuously at

{(J3 WI<63~ (2) <... < 6Jl(m~ (j)-l) }"J +l klklm~

(ii) K+(t:l) kltlHk (t:l)/2)k--lk+l k+l K~

\ +i(t:l)/2 G t ) > 0

( :k+l )> for t=l and t k+1 (j)

(iii Vk+l (xk+'r rk+l=j )

is either continuous, or

decreases discontinuously at the joining points

k+l k+lmk+l~j,-)

then for each rk = je M

529



(1) Vk (k(rkJ) is piecewise-quadratic and

uk(xk,rk=j) is piecewise-linear (as in (8.36)-

(8.37)), each having mk(j) pieces joined

continuously at

{6J(1 )< 6J(2)<...< 5 JmkJ)-l)}
k k k mkj)l

(2) j)H 2t

(t:j)/2 Gk (t:j) at tl and t=mk(j)

(3) V XrkJ
a (Jkxkrkj) is either continuous or decreases

3xk

discontinuously at the joining points

3k' () 3k (mk(j)-l

At time k=N, conditions (i)-(ii)-are clearly satisfied. If we consider

the sum of the x-terminal cost QT(xN,rN) and x-operatinq cost Q(xN,rN)

to be the last-stage x-operating cost (that is, we think of VN(xN,rN)=0)

then (iii) is also satisfied at time k=N. Thus this proposition can

be applied inductively, backwards in time from k=N. Ecuations for the

iterative computation of the quantities mk(j), Kk(t:j), Hk(t:j), Gk(t:j)

and (6J3(j): £=l,...,mk(j)-l} for each i,je M are listed in Appendix
k

D.l. These equations are developed in the proof of Proposition 8.1,

which constitutes the remainder of this section (with some details in

Appendix D.2).

Proof of Proposition 8.1:

For each form rk = je M, the minimization in (8.10) subject to

(8.1)-(8.9) is converted into the comparison of a finite set of constrained

-in-xk+i JLQ problems, each with x-independent forms.
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This is done conceptually via the following steps:

Step 1: Obtain a composite partition of \+l values

from the partitions associated with the x-costs

Q(xk+lrk+l=i), with the form transition probabilities

p(j,i:x) and the expected costs-to-go

Vk+l (Xk+lrkli) for each i e C.

The composite partition grid points are the boundaries

of the pieces of the piecewise-quadratic function

(in xk+l):

Vkl~xr ,r )rj
V~+,x~+,r~=j =(x ,r ) klk+l (+i k+lVk+l( llk= j ) =E + Q(xk+l,r k+l) xk+l (.8

This step is similar to step 1 of Section 5.4,

except that here we must include Q(xk+l,rk+l)

discontinuities.

Step 2: Formulating a set of constrained (in c+i) JLQ problems

having x-independent form transition probabilities and one-

piece quadratic costs; one problem for each region of

values in the partition of Step 1. This step is like

step 2 in Section 5.4.

Step 3: Solving the constrained subproblems that are formulated

in Step 2. These problems solutions represent the optimal
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expected costs-to-go from (xkrk=j) if xk+1 is

constrained to be in one of the specific regions

of values defined in Step 1.

Step 4: Comparing the constrained costs. The optimal expected

cost -to-go Vk(xrk=j) from any xk value is the

minimum of the constrained expected costs-to-go that

are obtained in Step 3. This minimization involves the

comparison of piecewise-quadratic functions in Xk.

The implementation of this step in the algorithm developed

in Section 8.5 is more complicated than for the JLQ

problems of Part III.

We will describe each of these conceptual steps in sequence so as to

demonstrate the validity of Proposition 8.1. The actual solution

algorithm mixes these steps and uses other facts (that will be

developed) to solve the control problem efficiently (i.e., with

fewer calculations).

Proof Step 1: For each form j e M we construct a composite partition

of the real line (of xk+i values) by superimposing the grids associated

with p(j,i:x), Q(x,i) and Vk+l(x+lrk+l=i), for all i e C..

The general procedure for obtaining the composite partitions is

as follows:
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For each r k=j e M the real line can be divided into a finite

number of intervals of Xk+ 1 values by superimposing the grids

i (tJ 2,. ., .l{ ~lt):t=1,2,..., ,k+l1iW-11

for each i E C.
I

obtaining the composite partition

-k+l k+l k+l k +1-1) <  k+1 k+

of uni .a qrid points.We define

j
k+= the (finite) number of such nonempty Xk+ 1

intervals

where the tt h such interval is

( (t) {x Y (t-l)< x < y (t)}
k+l k+l' k+l k+l k+l

k+l-l

These intervals of Xk values are the domains of the individual

quadratic-in-x+ 1 pieces of the function

.Vk+l xllrkj) xV tK ( t) + H t + Ct ) ()
k+6 ~l (8.39)

for Xk 1 e t)= I ,.k+l

k+l-
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where 't Ct) and G~ t)are specified by (D.l.l)-(D.I.3).whee ;.l t) Hk+l ()adGk+l

-" Here

k+1 + jiM:(Z) : Z=l,...,vj-l} {& +(9.): Z=l,...,m k(i)-i}
~iec.

(8.40)

where denotes cardinality. An upper bound on k' is given by
k+1

wk+l -- ji + mk+l (i)-31 (8.41)
iec.

where equality in (8.41) holds if

N).. (M) V. (P) for all i, n6C.

ii ti

V.i (2)€ i(q) k+l (q)

iilkt )

where Z=1,...,v. .-1, p=l,...v. -1; q-l,...,-1; t=W,...,mk+l(i)-l.
ji jn

Proof Step 2: Formulating the Constrained Subproblems

In Step 1 we obtained for each r =j e M a composite partition of
k

Svalues into intervals. We can formulate (for each' : k+1 valus ito k+l

r =j e M)a set of Jk constrained JLQ problems having xk+l-indepen-
k klk

dent form transition probabilities and quadratic (not piecewise-

quadratic) expected costs and x-costs; one corresponding to each
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region of x values. To see this,note that over each suchk+l

recion k+ t), Q(xk+lrk+l=i) and Vk+l( +rk+l1) are quadratic

and p(j,i;x ) is constant in +' for all i e C.. These constrained
k+l kJ

problems are:

Vkk k=Ji+lc Aj9 (t)] V Ex kilt]

(22 jUkR(j) + Xk+lQ (t)

ri E + Sj  k (8.42)
ku s.t. 'tx~ P't

X l 4+
(t )  + Vk+l k+l,rk+l

2
uk R(j) 2

mink2

S.t. + 'k+lQ (t)+xk+lSl(t)
M i

xle ~(t) 2. p(j,i , X~ + P Ct)

x~ie (t)il k++

subject to (8.1)-(8.3) for each t=l,2,...,+ 1k+l*
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Proof Step 3: Solving the constrained subproblems

The third step in this constructive proof of Proposition 8.1 is to

solve the contrained JLQ problems of (8.42). For each rk=j e M

the solutions of these constrained optimization problems
k+l

involve optimal expected costs-to-go that are piecewise-quadratic

in xk with two or three parts:

t,L(

k (xkl) if a(j)x < J(t)

k k

(8.44)

with corresponding optimal control laws

I J (t

V lx k'"iCj) if 6 )(j,< I<

xk kjIxkcleAk 1 (t))= f t(xkj) if -tt xk kkif 0(t)< aCj)xk< &

"1 k G~t' <a~jx~c(8.45)

AS in Chapter 5, the superscripts L, R and U correspond,

*respectively, to driving X,+1 to the left endpoint, the right

endpoint, or the interior of the reqion

A9  Jt) if (t-l) y+)

~k+l ) =(k+1  k ktk

iWhere constraint (8.42) is inactive.

, ~536 .t
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t L t,L
For t=l there are no left parts Vk and uk in (8.44)-(8.45).

For t = there are no right parts t'R and .,R. If
k+lk

2 t,U
(Vk = 2 R(j) +k (t) < 0

[b (j)+

tU
for some t, then the inactive-constraint control uk is never

valid; that is, for this t

eJ(t) = (t)

k k

in (8.44)-(8.45), and therefore Vk (xkrk=jlt) has only two pieces.

This kind of subproblem solution in (8.42) is the result of a suf-

ficiently concave-down piece of the x-cost Q(x,r=j). we saw an

example of this in t=3 of Example 8.4. The derivation of expres-

sions for these control law and expected cost pieces involves

straightforward (but tedious) algebraic manipulations that are des-

cribed in Appendix D.2. Formulae for the quantities in (8.44)-

(8.45) are listed for reference in Appendix D .1.
tLtO ,) n t,R

The V'L( ,j), Vk  (XkD andVk R(xk,j) in (8.44)-(8.45)

are similar to those of Chapter 5. In particular, when

12Vkt'U/( 3xk+l) 2 - 0 we have the followinq:

j t,Lat xk = Ok (t)/a(j) the values and slopes of V '(xkj) and

t,U
Vk  (xkJ) are the same. At (t)/a(j), the values and slopes of
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t, R t, U
V k (xkli) and Vk (x kj) are the same. At all other xk values,

the constrained costs are greater than the unconstrained costs.

-:That is, for t=2,..., ,1pJ (with 9 Vtk /(a xk+1) 0):

tL tU

V ~ ~ (x.Kti ) xk 6(kl)/a(t
ek (t)) kk k84a

tXk aIU xj
Vk~~~ ax' j)k

k (t) (t)
k~ ~~ k k84a

k a (j) 'k= a (j)

t,R L t
Vk (xk'j)> (xj k k'

k k 3(t) kx 93(t
k_ k

k a(t -k a~jj)

t,R tUo(t

k (k)> _______xk a~t

tv (x k) (xk
Vk k (t) ak xk' E&i(t)

k_ k
Xk a~t) xk a (j)
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When a Vtf/( Pax Owe have, for t=2,., -1:

t L (xk j) =Vt(xkF

3(t)= 3(t)0 3(t)= 3 (t)eX t k ~ t k' x k = k
xk kk ~) aj

ak j j a(j) a (j)

t,L t ,R . (8.46b)
aVk (x ,j) > aV k (Xk i

63 Ct)J 0 (t)= t) J(t
x k - k = k

a (j) a (j) a(j) a (j)

For all t--2,..., JP -l (regardless of the value of k2V)k(8.47b)
kl O~x l2

since Vki (xij ad VtF (xkli) have the same curvature it follows

that:

vtR ( j) VtL (xk,j) for a~jx>&t
Vk (k k(j k k

t,L t,R (.8
Vk ( ,j) V (x ,j) for a(jjx < 03(t) (.8

V (kj) Vk k k k

Proof Step 4: Comparing the Constrained Costs

The fourth step in this proof of Proposition 8.1 is to compare

the solutions of the +1constrained JLQ problems specified by

kl

(8.42). For each rk= 'Vkxr=j at each xvalue is the

smallest of the constrained costs in (8.43). That is,

Vk(krk j Ji {V(xk,rk=~kl A 1 (t))} 1 (8.49)
k+l

This minimization involves the comparison of piecewise-quadratic

functions in x
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In principle we can use (8.49) to find V (x ,r j) and

uk(xk rk=j) (that is, the quantities Kk(t:j), Hk(t:j), Gk(t:j),

L((t:) F ,(t:J)t)k t=l,....mk(j)-l} and mk(j) as in (8.36)-

(8.37)). This minimization was done graphically for the examples

of Section 8.3. In general, we must accomplish the minimization of

(8.49) by finding the intersections of the quadratic functions

l vlu~x~ vlR~x v 2 ,L 2,U 2,Rj jVk  (kj' Vk  k Vk  (kj.' V xj).Vk (kj '. '

3j-1,L  q3+P3,U 3 iP $3 i,L  3+iI U

k kk k (xi V (kj k+l C k+l-l~ kj,-l, ~k+llUV (x ,j) ,V (xk' j ) ,Vk  (xkj,J ,V (Xkj)Vk  (x,")
k kk kk k

(8.50)
and choosing Vk[x,'rk=j] at each value or xk to be the one having

the lowest value there (for those costs that are valid at x ). Thus
k

Vk[xkrk=j] is piecewise-quadratic in x and uk(xk,rk=j) is piecewise-

*! linear, as claimed in (1) of Proposition 8.1. The verification of (2)

in the proposition is straightforward, given our requirement that

(1)> 0 and QJ (1-)> 0 in (8.9).

The fact that

3Vk (xk ,  j)

k) is either continuous or decreases

discontinuously

at the joining points J6 j()...,6j(m (j)-l)} follows directly from

the comparison in (8.49); a particular joining point 63M can arise
k

in two ways:

(1) two (or more) of the constrained costs-to-go in

(8.49) may cross at 6k(Z). Since Vk(xk,rkJ)
-*k Vkxk k~

is the smallest candidate cost at each v value,

- the slope of Vk(xkrk=j) must decrease discontinuously

at such a 6jM.
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(2) may be an xk value where the optimal candidate

kk

cost in (8.49) changes from one of its parts

tL t,U t,R
(V , Vk ,V )to another.

kk k

-. When VktU

When 2Vk > 0 we can have( xk~l)2

63(2)= kJ(t)/a(-i);where the left endpoint
k kthletedon

constraint becomes inactive (i.e., Vk (x , jIt)
t'L~xk  k'U'kchanges from Vk ,Lj) toV)

k, (x')t k (xkli))
or

(9)= k&(t)/a(j);where the right endpoint
k k tergtedon

constraint becomes inactive (i.e., Vk (xkJit)

Vk (xk,J) to t,

In either of these cases the slope of V (xkFrk=j) is continuous
J

at Sk(Z ) .
t,U

When k -0 we can have

Z xk+1 )2

6J(9) = (t)/a(j) J(t)/a(j), where the left
k k k

endpoint constraint becanes inactive and the right

endpoint constraint becomes active (i.e., Vk (xK9iIt)

t,L t,R
changes from Vk (Xkj) to V (xkJ)). This occurs

t,L t,R
at the crossing point of Vk (rk,j) and Vk (xkj).

Consequently the slope of Vk(xk'rk=j) decreases

discontinuously here.

This concludes the proof of the one-stage solution given by

Proposition 8.1. Certain qualitative properties of the optimal

controller that are developed later in this chapter will be used to

simplify the procedure that is described above.
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8.5 An algorithm for computation of the optimal controller

In this section we examine several combinatoric and qualitative

issues related to the (off-line) determination of the optimal control

laws and costs of Proposition 8.1. Aspects of the problem that are

addressed here include:

* the nature of active hedging; examining what values

of an optimal controller will hedge to and why, and

what values of will be avoided and why

(Corollary 8.3),

* determining how many of the candidate costs (and

control laws) must actually be computed and

compared (Proposition 8.2),

0*characterizing the number of pieces, mk(j) of the
optimal expected costs Vk(xk,rk=j) and control

law uk (xrk=j).

The topics studied here are useful in the specification of an

efficient way to carry out the algorithm steps that is indicated

in the proof of Proposition 8.1.

These facts will be established as we pursue the following:

(1) First we show that many of the candidate costs

in (8.50) cannot be optimal (for any xk value)

and hence they need not be computed (Proposition 8.2).
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(2) Next we show that each candidate cost in (8.50)

can be optimal over, at most, a single interval

of xk values. This bounds the number of pieces

mk(j) of Vk(x,rk=j). (Proposition 8.4 and

Corollary 8.5).

(3) We then describe the endpieces (Proposition 8.6)

of the optimal JLQ controller for these problems.

(4) Finally, we use these results to devise an

algorithm for the computation of the optimal

controller in Proposition 8.1 that is efficient

in the sense that many of the candidate costs

in (8.49) need not be computed and compared.

The solution algorithm is presented in flowchart form and is described

in detail. It is basically similar to the solution algorithm of

section 7.2 (for the problems of chapter 5).

The following proposition eliminates many of the candidate costs

in (8.50) from eligibility for the optimal cost.

Proposition 8.2: In performing the minimization in (8.49), the

following candidate costs of (8.50) need not the examined:

(i) if
(J -(8.51)

(852
b (j)

and

^j -R(j) (8.52)

b 2(j)
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and rj)is continuous-at y (t) with'klx~lk~ k+l

2 1(t+1)Ykl (t +1 k+1(t)

(t+1 H () /(8.53)

then we need not examine

VkY Cik') V ~(xkj)

(jj) jf

+Kk. (t) < 2 (.4

b (j)

then we need not examine

t U-
Vk

(i) if V (lxklk =)is discontinuous at yk (t) with

lk+l t] ,1

k+1 k+1 k+1 (8.55)

+

k+. k+1

t+l,L
then we need not examine V k (k
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(iv) if V (x Ir =j) is discontinuous at Yk l (t) withk+l k+l k k+l

the inequality in (8.55) reversed, then we need riot examine

t,R
V Cxj)
k .k

The proof of this proposition is in Appendix D.3.

This proposition is a aeneralization of Proposition 5.2. For the

problems of Chapter 5, (8.5l)-(8.53) are always true and (8.54)

never occurs. For the more general problems of section 8.2 we must

*F account (in Proposition 8.2) for additional possibilities. Consequently

we must examine a different (and usually more numerous) set of candidate

costs than for those of Chapter 5 in the minimuzation of (8.49).

For example, if either (8.51) or (8.52) does not hold, then we

t,R t+lL
must examine Vk (xk,) =Vk (x=kc) even thouqh Vk+l~xk+l Irk =)

is continuous at yk+l t). In examples 8.3 and 8.4 the optimal controller

A
hedqed to continuous points of VN(xNIrN-1 = 1) for xN-1 intervals over

which these additional eliqible candidates were optimal. Hedging to

continuous points of the conditional expected cost-to-go was not possi-

ble for the JLQ problems of Part III.

An illustration of Proposition 8.2 (ii) appeared in example 8.4.

The candidate cost V 3 x = 1) was shown to never be valid, because
N-I e-1

a2 3,U

VN-1
2<0

< R(1)
This second derivative is neqative if and onlv if K (3) 2 -N b2--- l) as in

(8.54). Thus Proposition 8.2 (ii) specifies that for example 8.3 we need

3,U 3,L 3,R
not examine VN-1 but we do have to examine N- and VN I.
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Our requirements on Kk (i), KJ(n - ) QJ(1) and QJ(n-J)in (8.9)TT

guarantee that (8.54) does.not hold for t=l J That is, we must
1I, t k+l l-

always examine-V and VT
t~u *K

Therefore the endpiece candidate costs Vk (Xk,j) and Vk (xj)

are eligible candidates for consideration.

The following corollary specifies necessary conditions for a point

Xk+I to be hedqed to.

Corollary 8.3:

If the optimal controller in Proposition 8.1 hedges from (xkrk=j)

to the point x.+=x then one (or more) of the following is true:

() x is a discontinuous point of the conditional

cost V k+l (2k+lr k~j)

or

(2) x is a boundary (y W (t) or y (t-1)) of an in-
k+l k+l

terval A (t) overwhich the conditional cost
k+l

Vk+(xk+l rk=j) has

2
,+(t)< -R(j)/b (j),

or
(3) x y (t) is a boundary of intervals W and

k+lryo esAjt

A (t+l) where Vk+l(xk+iIrk--j) is continuous and

1 Wk+l ( (8.56)

Proof: Hedging-to-a-point can occur only to finite boundary

points of the intervals {AJ+3(t): t=l,..., 1J;}; that is, to
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an element of the set k+l(t): t=l,..., +-l}.k+1 k~- 1}. When the optimal

to such ai r Vt ft,R
controller drives Xk+l to such a point from en either Vk

or V is the optimal cost from that xk. Proposition 8.2rVk

excludes many of these constrained candidate costs from eligibility.

Corollary 8.3 lists the possible ways that a constrained 
cost V tR

k
t+l,Lj,or Vk associated withy k+lt) can be eligible -Corollary 8.3(1)

occurs when either Proposition 8.2(iii) or 8.2(iv) holds. Here

we hedge to the low-cost side of a Vk+l( ll+rk=j) discontinuity.

Corollary 8.3(2) occurs when Proposition 8.2(ii) holds, When (8.54)

tU .t ,L t,Ris true, V ' is not eligible but both V , and V areVk  are

eligible (unless excluded by Proposition 8.2(iii) or (iv)).

Corollary 8.3(3) h~ids when (8.53) of Proposition 8.2(i) is not

satisfied.

Note that if one or more of the conditions of Corollary 8.3

is satisfied for some x t) we are not Juaranteed that the

optimal controller hedges to that x; the associated constrained

costs Vk'R and V + I ' L need not be optimal in (8.49).
k k

From Proposition 8.2 we know that the mapping

xk  Xk+ 1 (xk , rk=J)

need not be one-to-one, in that hedging to points may occur.

Proposition 5.3, which lists a number of general qualitative pro-

perties of the optimal controller, applies for the JLPQ problems

of this chapter. We repeat this proposition here. The proof of

this result for the JLPQ case is somewhat different in detail from

the JLQ case.
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Proposition 8.4:

The optimal controller of Proposition 8.1 has the following

properties:

(1) At each time k and in each form jeM, between joining

points (6Sk(t): t-l....,mk(j)-l} of Vk(xk,rk =):

ulxkrk -b(j) Vk (Xk' (k= j )

k=J) 2a(j)R(j) xk (8.57)

2 V (x ,r =j)

b k k k(8.58)
Xk+l(xrk=J) a(j)xk 2a(j)R(j) xk

(here a(j)R(j)#0, b(j)#O).

(2) At those joining points 6 where the slope of Vk(xk,r k=j)

( avk (xk ' rk=j) )
does not change ie, exists

uk (xk , rk=j) and xk+l (xk rk=J) are continuous functions

of xk

(3) At those joining points 63(t) where the slope of Vk(x,r

decreases discontinuously
i•  Vk(x'r=J) Vk(k'rkJrkJ)

ie., k xk k__k _____

xk a 3 xk

j) . k xk  < xk= '

- 54
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(i) kIrki) increase discontinuously at 5when

b(j) >0 (and decreases discontinuously at
a (j)

when b~)<a (j)

(i) the mapping 'k k~ (x~ j increases

discontinuously at 6when a(j)> 0) (and decreases

discontinuously at Swhen a(j)< 0).

(4) The mapping

xk-.- xkl(xk'rk))

has the following properties:

i) the mapping is monotonely nondecreasing if

a (j)> 0 (and monotone.y nonincreasing if ,

a(j)< 0) for each jlEt

(ii) it consists of mk(j) line segments:

*one line segment with positive slope if

a(j)> 0 (negative slope if a(j)< 0) for

each xk region where an "unconstrained cost"

t,tU
Vk (x.k1rk-1) is optimal:

Vk xkr ) k t.U 'r

a J (j)R ()b(j) - k+lW

K+ .R(j)+b (j) Ki~ (t) 2[R(j)+b () +l()

(8.59)
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a constant line segment for each xk region

where there is active hedging-to-a-point:

J (t) te{l,... J''~

xk+l = Yk+l "')k+l } "

(iii) there are regions of Xk+1 avoidance associated

with (and only with) each x =4 value where
k

the slope of V ( rk j ) decreases discontinuously.

~ Each cndidate k "ik=

(5) Each candidate linear control law associated with the costs

listed in (8.50) can be optimal over, at most, a single

interval of xk values.

Proof: Items ((l)-(3) and are proven exactly as for Proposition

5.3 in Appendix C-4. For item (4): From 3(ii) we have that the

mapping

'k Xk+l ( k=J)

increases discontinuously at joining points where Vk(xk,rk=J) is

not differentiable, and from (2) the mapping is continuous at

other joining points.

Now between joining points, if the optimal cost corresponds

to hedging-to-a-point then clearly the mapping is constant. If

the optimal cost does not correspond to hedging-to-a-point, then

in such a region

Vk(xk, krj = ) 'V (xj) xX(t) + V4kH(t) + G ktW
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for some tE1..Thus from (8.58)

2 3V (x ,r =1)
xJ~Jjk~kj =a~~x - b (j) k k k
kl xrk j jxk 2a~j)R(j) a -

hence

2x~ b() V(xkrk=j)
a a(j) .- U... a

ak2a(j)R(j) Caxk) 2

2
=a(j) -b (j 2K~t

2a(j)R(j)

If R(i) + b K~(t)=0 then lc t) =0 so ax a(j)>0

*If R~j) + b 2K j 1 t)#0 then

= ~j - 2i 2a 2 (j) R(j)K (t) t~
a(j)R(j) (8.60)

2

If W+,(t)> -R(j )/b2(j) then -x~ > 0 in (8.60) if

a(J)> 0 (and axk+ < 0 But for tu(
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to be optimal over some interval of X values, we must have

J /b2

(t)> - R(j)/b (j)

by Proposition 8.2. Thus we have 4 (i), (ii). The remainder of

the Proof of Proposition 8.4 follows the proof of Proposition 5.3

in Appendix C.4, exactly.

Proposition 8.2 restricts the number of candidate costs that

must be considered in (8.49) and fact (5) of Proposition 8.4 says

that each candidate can be optimal over at most one x interval.

Thus we inediately have from (8.50):

Corollary 8.5:

The number of pieces of the optimal expected costs-to-go

Vk( xkrk=j) and their associated control laws are bounded above by

k -2 * (8.61)

A weaker bound which follows from (8.41) is

m (j)< 3 [ +mk+m - 8 (8.62)
k -~c see

The bound on the growth of the number of pieces, mk ( j ) ,

(as (k-N) increases) in Corollary 8.5 is much larger than for

the JLQ problems (in Corollary 5.4). Corollary 8.5 suggests that
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the number of pieces in each optimal expected cost Vk(krkJ) may

grow geometrically rather than linearly (because of the factor

3mk+l(i) in (8.62)).

We examine next the behavior of the optimal JLPQ controller

when x is far from zero. As in the JLQ controller, over their end-

pieces Vk(xk ,rk'j) and uk (xk rk=j) can be computed from sets of

recursive difference equations. These equations correspond to the

solutions of x-independent form probability, single-piece x cost

JLQ problems (as in Chapter 3).

For finite time horizon problems, if xk is negative enough or

positive enough the optimal strategy will be to keep x in the same

extreme piece of the form transition probabilities p(j,i:x) and

x-costs Q(x;R,), Q (x,j), for all if C. from each j6M, for all futureT

times.

Proposition 8.6: Endpieces

Consider the JLQ problem of Proposition 8.1.

(1) For x J(l), the optimal control laws and expected

costs-to-go are

Vk (x~rk=j) = Vk(k

I Vle (2 2Le Le. Le
__k (xkJ)= xk K (j) + xkH k(j) + Gk (j) (8.63)
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u, (xkrU=j)

A Le = Le Le * (8.64)
= 'J) = - (j) + Fk ( )(8.6

(2) For xk >k (mk(J)-l), the optimal expected costs-to-go and

control laws are

j ' ,U

lu
k+1,

Vk(xkrk=j) - V) ()

Re-Re (8.65)

kakad ntm fromN k

iLe x a2k ()kR()ll (J)

ARe j)eRe(8.66)
Rej +b2 (j) (i(j=kUk (x(jj) -LK (j).xk

ar j +buj)k (j)

(3) The parameters in (8.63)-(8.66) are computed recursively,

backwards in time from N by

2 1^.
Kb() = 2a 8.67)

R(j)+b ()+l (j)

AT.e

Le a(j) R(j) HkCl (M
k2 ^e

R(j)+b (j)Kk Mi

2(jALe 2

G (J) =j1j b jtk- ~ ) (8.69)
k- 4[R(j)+b 2(i)Kke l)
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where

Le l(j) = I xee X(1) (ej ()-Qj(1) 3 (8.70)

ALe ( - L. .(1) LG1  W (j+Ps (1)] (8.72)

- 2.c. j K+1

and

2 ARe
Re a lR -)k+ (j)

YK () =(8. 73)
k 2 *ARe

R(j)+b (j)K'k+l (l)

Re M ~ )~iHK = i) (8.74)
11k R = (j) +b 2 (j) ^Re M

2 ^Re 2
Re ^Reb (j)tHj (j)]

k i 1(j 2 )^Re
a k - ~4[R(J)+b ())K. l](.5

where

1( (l)- (v11)Xi)M+Q'(.) (8.76)

ARe -j Re (.7

* . jec
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A]Re (j.(V.)E Re 1j)P2 *
k+ (j) - I jiG (i)+p ) (8.78)Gk~l iec k.

with terminal conditions

te(j) = K(1) (8.79)

KCNRT j 6( ) ' (8.80)

Le. j
HN (j) H (l) (8.81)

N T

Re
HN (j) R T ( ) (8.82)

Le
GN (j) G (1) (8.83)

GRe (j) G (0) * (8.84)

N T

The control law gains are

ae9b-(j)- (8.85)

Lj (j) 2L (.5
R(j)+b (j)K +(j)

"Le-b(j)H (j)
Fk(j) (8.86)

k 2."Le.2[R(j)+b (j) (+lj)]

^Re

a(J) b(J)R W+(J
e(j) = (8.87)

R(j)+b 2 (j)+l(j)

Re

Re .".k+lFk M 2 )Re (8.88) -

2[R(j) +b (j)Kk+l(j)] (
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Proof: This proposition is essentially the same as Proposition 6.1,

except for the parameters of the extreme x-cost pieces in (8.70)-

(8.72), (8.76)-(8.78) and terminal conditions (8.79)-(8.84).

In these extreme pieces since we have assumed (in (8.9)) that

M> 0 QJ()> 0

K T> 0 K T(n)> oK T  _

for all j42M, we will have

^j-R(j) anK+3 (1) > and
b (j)

k+l( k+l)_0

lU(k J k+l, U

Thus by Proposition 8.2, V j) and V (x j) will be
k xk k k

valid subproblem solutions in (8.49) for some range of xk values.

Therefore we can apply the arguments of Appendix C.5 directly to

establish Proposition 8.6.

The conditions for the existence of steady-state endpiece cost

parameters and control law parameters are the same as in Proposition 6.2,

and will not be repeated here.

We have identified some basic qualitative properties of the

JLPQ problem that can be used to reduce the combinatories involved

in the "brute-force" solution of the one-stage problem that was
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presented in the proof of Proposition 8.1. We now present a

solution algorithm that exploits these properties, enabling us

to solve the general JLPQ problem (8.1)-(8.10) efficiently.

This algorithm is based upon the application of the one-stage

solution of Proposition 8.1 recursively, backwards in time, for each,

j4M that the system can take. The basic idea of the JLPQ solution

algorithms is the same as in the JLQ solution algorithm of Section 7.2.

For each form jEM at time k, we can compute Vk(x.,rk=j) and

uk(xk,rk=j) one piece at a time, sweeping from left to right along

the axis of a(j)x k values.

An overview of the solution algorithm is shown in Figure 8.5.

The algorithm is initialized with the terminal time (k=N) cost

parameter (block 2). Then for successively decreasing times through

k=-k (block 13), the one-stage solution of Proposition 8.1 is obtainedo

for each form jeM (block 10). Figure 8.5 differs substantially from

the analogous flowchart (figure 7.1) of Section 7.2 only in the

initialization block (block 1).

In the following discussions we refer to the algorithm flowchart

shown in Figures 8.5-8.11. All of the steps indicated in this flow-

chart constitute one iteration of block 10 in Figure 8.5. That is,

they determine the one-stage JLPQ solution that is specified by

Proposition 8.1 for some time stage k and form j. For the reader's

convenience, a table of block number locations and entry points is

given in Table 8.5.
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Figure Number Block Numbers Entry Points Exit Points

8.5 1-15 Start (blk. 1) Stop (blk. 14)

8.6 16-26 from block 10 Q (blk. 22)

8.7 27-51 (blk. 27) (bik. 46,48)

C) (blk. 31)

8.8 52-63 (blk. 52) 3 bk. 63)

8.9 64-68 W (bik. 64) W (bik. 68)

" (bik. 68)

8.10 69-76 W (blk. 69) (blk. 70)

(bk. 76)

8.11 77-86 W (bk. 77) (blk. 84)

() (bk. 80) @ (blk. 86)

return to block 10
from bik. 82)

TABLE 8.5: Block Number Locations and entry points for
JLPQ solution algorithm flowchart.
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A macroscopic overview of the algorithm specified by this

flowchart is as follows:

1. The algorithms is first initialized (in block 1) at

time N with the terminal x-cost QT(xj) for each
*jeM_.

2. The determination of the optimal controller at time

k for a fixed j value constitutes one iteration in

block 10.

3. The computations of block 9 begin in block 26 with

the determination of the composite Xk+1 partition

(block 16). This partition is obtained from the

joining points of V (x ,r =i) for all iec.
k+1 k+J. k+1 j

that were computed in the previous time stage, and

from known parameters of the problem.

4. For symmetric problems about zero we only compute

this grid for Xk+l 0. This is accomplished by

blocks 17,23,24 and 25. If 0 is agrid point

we must be sure to include it in later calculations

(blocks 20,21).

5. The next task is to determine which candidate cost-to-go

functions are eligible for optimality with respect to

Proposition 8.2, and to compute the parameters for these

eligible functions. This is done in Figure 8.7. We

begin by computing the conditional cost parameters for

Vk+l(xk+llrk=J) for all t=l,...,k+i in block 27.

We also calculate here.
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6. By Proposition 6.1, the endpiece cost V (k )

is always an eligible candidate. It is computed

in block 28. If 3 =1 then we are done (block 31).
kl

If not, then the xk~ipartition piece counter is

set to t=l in block 32, and the variable Lside is

set to "yes" in block 33. The variable Lside answers

the question:
A is ) 2

is Wk+l > -R(j)/b 2(j) ?"

That is, is (8.51) satisfied on the

left side of y +(t)?
ki+l

7. In blocks 29,35,37 we determine if Vk+ Xk+ll rkj)

has a discontinuity at xk+l " t). If there
k~l,

is a discontinuity,then either Vt 'R or Vtk is
computed (as specified by (iii)-(iv) of Proposition

8.2) in block 34 or 36.

8. If Y M(t) is not a discontinuous point of
k+1

Vk+l (xk+llrk=j) then we enter block 38. If

Lside=no then either t=l or

Aj -R(j)

+l (t-l) (j)

That is,(8.51) of Proposition 8.2(i) is not satisfied

so we must compute Vk'R(xkj) and Vk+I'L(xkj), in

block 45.

5.
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9. If Lside=yes in block 38 then we check condition (8.53)

of Proposition 8.2(i) in block 40, and compute

t,RtlLVk (xk j) and vtll 'L (xk j) if required (in block 45).

10. The X+i partition piece counter, t, is incremented

in block 39. If t=P+ 1 (block 41) and the problem is

not symmetric (block 43) then we compute

k+l'U (in block 46) which, by Proposition 8.6, is

Vkvk

an eligible cost candidate.

tj
11. If t=k+l (block 41) and the problem is symmetric

kk~l
(block 43)then V is not an endpiece (because of

block 24). Therefore we compute VtR = vtlL

U
(in block 44) and test to see if V k should also

be calculated (in block 47), according to (8.54) of

Proposition 8.2(ii). If it should, we pass from

block 47 to 50 to 46. If not, we exit via block 48.

12. If t < in block 41 then we assign the Rside value
k+l

to Lside (in block 42) and then test (8.54) of

Proposition 8.2(ii) (in block 47) to see if

Vk

should be calculated. If it should, we set Rside to

yes (iD block 51) and perform the calculations in

block 30. If not, we set Rside to no (in block 49)

and compute V = Vt+lL (in block 45).
k

569

*%. .o.- .



13. Upon leaving figure 8.7, we have calculated all

of the cost parameters for eligible candidate

cost functions. Figure 8.7 is substantially dif-

ferent from figure 7.3 of the algorithms of section

7.2, due to the major differences between

Propositions 5.2 and 8.7.

14. We next prepare for the rightward sweep alona the

a(j)xk axis by obtaining in Figure 8.8 the

partition of the real line (of a(j)xk values) that

is caused by the points {fe(t), G(t-l): t=2,..,4? }.I
case b tek k k+1

If the problem is symmetric we compute k3(3 as

well, in block 57. In block 63 we obtain the grid

ordering required for the righthand sweep.

Initialization of the righthand sweep is completed in

Figure 8.9, where the endpiece result of Proposition

8.6 is applied. Figures 8.8 and 8.9 are more

complicated than figure 7.9 in the section 7.2

algorithms, due to the different 8 and 9 computations

that arise when K+l(t)< -R(j)/b (j).

15. Finally, the algorithm performs the minimization in

(8.49) over each interval of a(j)xk values in the

6-0 partition, starting on the left. This task,

shown in Figures 8.10-8.11, is identical to the steps

in Figures 7.5-7.6 in the section 7.2 algorithm,

except for blocks 80 and 81. If N+l=0 was a grid

point of the xk+l partition (that is, if zflag=yes)

and the problem is symmetric, then we have 63(m+l)=O.
k
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This completes the derivation of a solution algorithm that

computes, off line, the optimal control laws and expected cost-

to-go parameters for the general class of finite time-horizon

JLPQ problems formulated in Section 8.2.

In the next section we conclude this chapter with the application

of this algorithm to an example problem. -

8.6 Using the JLPQ Solution Algorithm

In this section we will use the algorithm of Figures 8.5-

8.11 to solve the jump linear piecewise-quadratic control

problem of Example 8.2 for another time stage.

Example 8.5: (Example 8.2 at k=-N-?):

Recall that the x-cost Q(xk,rk I) for this problem has

three constant pieces (specified by (8.21) and shown in Figure

8.2(a)). The optimal controller parameters at time k=N-i are

listed in Table 8.2 and are shown in Figure 8.4.

We apply the solution algorithm of Figures 8.5-8.11 at time

k=N-2, for j-1:

1. Obtaining the composite XN 1 partition in block 26

we have
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= 1 (symflag=yes)

1

yN-(0)
i

1
y1 (1) -23.413

yNI (2) = 1

1
y 1-(3)=-.5
N- 1
1

YN- = (4) 0 (zflag=no)

2. Computing in block 27:

KN =1

N-

N-1 ()= N-1i)=0 N-1 (1)=968.75
K (2)--.25N-Ni

N-i HN- 1 (2)=.25 G N- (2)=837.5625

^1 ^l ^1
(3)=.75 H (3)=.75 G (3) = 512.6875
K ()=75N-1 N-i

KN_ 1 (4)=0 HN-i (4)=0 GN_ 1 (4)=437.5

l,U
3. In block 28: V = 968.75

4. In blocks 29-435--,37:

G2(11) = 151.92= (1,2)
N-2 N-2

5. In block 40:
Al ^1S(1)-Hi (2)

YN 1 (1) [N 1 (2)-k 1  (1) = -5.853 <-125 2N- 2
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6. In blocks 39--*41- 42-47:

K (2) =.25 > 1Rl
N-1 2 -1

b (1)

7. In blocks 50 51 30:

2, U 2
v (.*2) + (. 2 )xN + 837.55

8. in blocks 29-.35 -.34:

N-2(2,2) = 838.5625

G 1
NG (2,3) = 438.6875

VN3,L (xN2 j) X 2 -2 + 438.6875

9. In blocks 39-'v4l-.,42-,47-.o50-p5l-p3O:

Lside=yes

2R(l

K Rsideyes

v3,U ( .4286)x2  + (.4286)x + 437.607
VN-2 N_2 N-2

10. In blocks 29-+35 -.,37-t,36:

G (3.3) =437.75
N- 2

p. . "1
GN2 (3 .4 ) =512.9375

v 3 R (x ,j) = 2 x + 437.75
N-2 N-2' N-2 N-2



11. In block 39, t=4= and symflag=yes in block 43,

so we compute

v4 ,R 2

in block 44 and, since

we compute

,vU ~U , , ,

in block 46.

13. We compute the grid of 6-0 values in Figure 8.8:

1
0 (1) =-.23.413 (block 52)

N- 2

1e N-2 (2) =-29.141

E-2(2) =-1.125
N-

r 1
N- (3) =-.375

N- 2
1

0N2(4) =.0 (lc 7

N- 2

574



14. Ordering these grid points as specified in block 63:

1 (2)<1 (1)< 91 (3)<1 (2)< 91 (4) ) (3)< D (4)
N-2 N-2 N-2 N-2 N-2 N-2 N-2

15. In blocks 65-b 67-- 68:

KN_(1:1) = 0 = L_ 2 (1:1)
N-2 2N

H_(1:1) = 0 = F (1:1)
HN-2 N-2

G (1:1) - 968.75
N- 2

m=1

16. We begin the search along the 9-0 partition of a(j)xk

values in the interval

1
(- , -29.141) = (- , 9 (2)).

N- 2

The initial list of eligible costs is

l,u (prevailing cost) and V3 ,L
VN-2 N-2"

17. In block 69 we find that the leftmost intersection of

1 N- and V3 ,L is atVN-2 N-2

XN- 2 = -24.04

18. In blocks 70-1, 71 -. 77-- 79:

we move into the next partition piece

(9 12(2),0 1_(1)) = (-29.141, -23.413)
N-2 N-2

l,U 3,L
Here the prevailing cost and V are the

VN-2 N-2

eligible and valid candidate costs.
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19. Since the prevailing cost V is still valid we go
N-,2

to block 69 (Figure 8.10). The intersection of VlNU
N -2

V3 ,L is at = -24.04, so we go to block 72:
N-2 N-2

1N (1) = -24.04
N- 2

V3,L
V now prevailing
N- 2

20. Setting m=2 (block 76) we have (by block 75):

KN_2 (2:1) = 1 = L_ 2 ( 2 :1)

H (2:1) 2
N-2

GN_(2:1) = 438.6875

F (2:1) -1
N- 2

1 2,U 2 U t g
21. In block 73 we remove VN_2 and V-2 from the eligibility

list. The only currently eligib valid cost is the

3,L
prevailing cost VN_2, so no new intersection need to be

found in block 69.

22. In block 79 we move rightward into

(1 (1), e 1_(3)) = (-23.413, -1.375)
N-2 N-2

The list of valid eligible costs still contains only

V3 , L

23. In blocks 86-- 83-- 7 0-)77 -- 79--83 :

we move righthand into

1 1(e (3),G (2)) = (-1.375, -1.125)
N 2 N 2
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3, L 3,UJ
V ceases to be valid and is replaced by V (which

VN- 2 N- 2

is now the only eligible valid cost).

*24. In 86"*85 -84-P76-,s75:

S (2) =-1.375
N- 2

and

3,U
VN2 is the new prevailing cost (block 49).

m-3

K N2(3:1) = .4286 =L N2(3:1)

H (3:1) =.4286
N- 2

G N2(3:1) =437.607

F (3:1) =-.2143
N- 2

3,L
25. We remove VN2from the eligibility list (block 73)

3,U2

and since only 3,U is valid and eligible, there are

no new intersections to compute in block 69.

*26. In blocks 70 -P7 7--o 79-83-.86 -- 6 9:

1GN (2), e 1 (4) = 0N21 3 M ) (-1.125, -.5

The eligible valid costs still include only the
3,u

prevailing cost VN2 so no new intersections are

computed in block 69.
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27. In blocks 70-*77-i79-*83-86-S85-*84

we move into the interval

(e _ (4) = 0N_ (3), 0N_ (4)) = (-.5, 0).
N j

We have moved past both _ (4) and N_ (3), so the
N-2 N-2 4

list of valid eligible candidates becomes VN 2

3,U
only. Thus the prevailing cost VN_2 is no longer

1
valid. We set 5 (3) = -.5 and the new prevailing

N-2

cost is
VN- 2

28. In blocks 76-t77:

m-4

(4:1) =0 =L (4:1)

H (4:1) = 0 = F (4:1)
N-2 N-2

G (4:1) = 437.5
N- 2

29. In blocks 73-69-*70-77--78:
4,UOnly V is eligible, so there are no intersections

to compute. We are in the last partition interval and

a(l)> 0.

30. The problem is symmetric but zflag=no, so this k=N-2

iteration for j=l is completed.

Collecting the results of the above steps, we have the optimal

controller from (xN 2 ,rN- 2 =l) in example 8.2=8.5, as listed in

Table 8.6 below, and shown in Figure 8.12.
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Comparing these results at k=N-2 with the k=(N-l) results of Table

8.2 and Figure 8.2 we see that:

1. For small IkI (lNxk J<.5) the optimal controller spends no

control energy to move the x-process, since it is already

in the Q(x,r=l)=0 piece. This is true at k=N-l and k=N-2

(and at all other times for this example).

2. For large Ix 2  (IxNlI >23.413 and JXN_21> 24.04) the optimal

control is also zero.

3. In example 8.5, for 1.375< IxN_ 2 1< 24.04

he optimal controller hedges to xN_1 or 1. These

are the low-cost sides of VN_(xNIrN 2 =) discontinuities.

At time k=(N-1) we did not hedge to these discontinuities

for any XNl*

Note that we not only hedge to X l or x 1 but, byXN-l"= N-l=

Figure 8.2(d), we will also hedge at the following time

step to xN -.5+ or .5. That is, at time N-2 the controller

actively hedges to place the x process in the advantageous

p(l,2:x) piece. Then at time N-1 the controller actively hedges

to place the x process in the advantageous Q(x,r1l) piece

as well.

4. In example 8.5, for

.5 <tx _ t 1.375,
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• _ m

we choose control U (x 1) which results in
N-2 N-2'

.5 <lXN 1l< 1. Then at time k=(N-l), the optimal controller

hedges to the joining points x N=.5 of Q(x,r=l). Here the

optimal controller doesn't have to hedge to-a-point with

UN 2 to place xNl in the advantageous probability piece

(IXN_ll < 1), but it does hedge-to-a-point to get xN into

the preferred Q(x,r=l) piece (IxN1 <.5) j

8.7 Summary

In this chapter we have extended the kinds of x-operating costs

that can be incorporated in the formulation and solution of control

problems for jump linear systems. We have developed a solution

algorithm that determines the optimal controller for perfectly ob-

served, noiseless, scalar jump linear systems where the form

transition probabilities are piecewise-constant in x and the

x-operating and terminal costs are piecewise-quadratic. These costs

may contain discontinuities and they may be concave over any but

their extreme pieces.

The qualitative results and solution algorithm for the JLPQ

problem that has been developed here provides a basis for the
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approximate solution of scalar jump linear control problems with

quadratic control operating costs and

. x-operating costs Q(xk+lrk+l)

* x-terminal costs Q (x ,r

. form transition probabilities

* input noise densities

that are piecewise convex and concave. This is the topic of the next

chapter.

.5

I
I
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9. CONTROL OF JUMP LINEAR SYSTEMS WITH ADDITIVE INPUT NOISE

9.1 Introduction

In this chapter we extend the solution methodology of chapters 5-8

to address a larger class of scalar jump linear control problems,

possessing additive input noise and a more general class of x-dependent

form transition probabilities, x-operating costs and x-terminal costs.

Specifically we consider scalar jump linear control problems with

quadratic control penalties and

* input noise densities that are twice continuously differentiable

except at a finite number of points,

* x-operating costs Q(x, r ), x-terminal costs QT(x,r ) and

form transition probabilities p(i,j;x) that are twice

continuously differentiable in x, except at a finite number of

points; they consist of a finite number of convex or concave

(in x) pieces.

we call this the jump linear piecewise convex (JLPC) control problem.

Our study of this class of problems is motivated by a desire to

make the solution approach of chapters 5-7 applicable to more realistic

control problems. The discussion in this chapter builds directly upon

the JLPQ problem formulation and solution of chapter 8. In turn, the

results of this chapter provide a basis for the study of jump linear

control problems possessing n-dimensional state process and control-

dependent form transition probabilities, in chapter 10.

The major extension of this chapter is the inclusion of additive

input noise in the x-process dynamics. As we indicated in earlier
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chapters, we can approximate general x-dependent form transition pro-

babilities in piecewise-constant way, and general x-operating and terminal

costs by piecewise-quadrat ic functions. We cannot , however, reasonably

approximate the behavior of jump linear controllers subject to additive

noise by noiseless JLQ or JLPQ controllers. As we shall see in this

chapter, additive input noise profoundly changes the nature of the optimal

controller. It is not possible, in general, to use the control input to

drive the x process into a specified interval of values (or to a boundary

of such an interval) with certainty, because of the noise. Consequently,

we cannot solve a noisy JLQ or JLPQ problem by comparing the solutions

of constrained-in-x subproblems.

For JLPQ problems like those in chapter 8, the presence of additive

input noise leads to the loss (in general) of the piecewise-quadratic

structure of the optimal controllers, due to the "blurring" effects of

the noise. If the noise density has a piecewise structure (that is,

if it is twice differentiable except at a finite number of points

(the piece boundaries)), then the optimal controller's expected cost

will also have a piecewise (but not quadratic) structure. We have

included more general piecewise structures for the x-operating costs,

x-terminal costs, from transition probabilities and noise densities

in the JLPC problem formulation because the piecewise-quadratic

structure of the solution optimal cost is lost in any event.

In this chapter we will show how JLPC control problems with additive

input noise can be reformulated at each time stage k as different,

equivalent JLPC control problems that do not possess input noise. These
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reformulated problems involve an artificial variable z, which replaces x.

These reformulated JLPC problems can be solved using the approach

of chapters 5 and 8:

We break up the reformulated JLPC problem into constrained sub-

problems, and then we compare these subproblems solutions to

determine the optimal controller. These constraints are in the

artificial variable zk (instead ofXk).

At each step in time, the control problem involving the search for

Vk (xkrk=j) results in a set of noiseless, constrained-in-zk+l sub-

problems with z-independent form transition probabilities and single-

piece z-costs. Each subproblem can be solved analytically, and the

resulting subproblem optimal costs are compared at each xk value to

obtain Vk (xkrk=j). However, since the subproblem solutions are not

in general quadratic in zk( or xk), we don't have the nice inductive

solution structure of the problems of chapters 5 and 8. At each time,

the analytical steps required to minimize the constrained subproblems

may be quite different.

We propose, therefore, a suboptimal approximation of the one-

step JLPC control problem (at each time stage k) that results in

controllers that are pieccwise-linear in xk. This approximation

method constrains the controller to drive the system to one of an

arbitrary grid of points (z k+1 values). This is essentially is a

brute force approach which is subject to significant error as the

number of time stages of approximation increases. Better approx-

imation methods that utilize knowledge of the problem structure
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can probably be obtained, at least for certain classes of JLPC

problems. We have not investigated approximate solutions in detail

here.

This chapter is organized as follows:

1. In section 9.2 we formulate the general JLPC control problem

with additive input noise.

2. In section 9.3 we describe how the basic solution approach

of chapters 5 and 8 must be modified when there is additive

input noise in the x dynamics. We use two example problems

to illustrate this process.

3. In section 9.4 we solve for the last stage controller of

a JLPC example problem (example 9.3). The example problem is

the same as example 8.5, except for the additive input noise.

We compare the resulting controllers for each problem to

illustrate the effects of the additive noise. An approximate

solution method is also developed for example 9.3.

4. In section 9.5 we derive a general one-step solution procedure

for the JLPC problems that are formulated in section 9.2. This

procedure is patterned after the examples of sections 9.3 and 9.4.

5. In section 9.6 we establish a number of qualitative properties

of the optimal one-step JLPC solution. In carticular, we describe

active hedqinq in JLPC controllers.

6. In section 9.7 these results are then used to construct an alao-

rithm for the efficient determination of the ootimal controller.

This alqorthm is presented in flowchart form.
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7. In section 9.8 we demonstrate the application of the optimal

controller derivation alqorithm to an examDle problem. This

example serves to illustrate the need for numerical methods

(as opposed to analytical methods) in certain steps of the

algorithm.

8. In section 9.9 we consider the approximation method that

was discussed above. The resulting controller is apolied

to two time stages of the example of section 9.8, and

the performance of the approximate and optimal controllers

are compared.

588



9.2 JLPC Problem Formulation

In this section we formulate the jump linear piecewise convex (JLPC)

control problem with additive input noise that is addressed in this

chapter. As in earlier problems we restrict our attention to the time-

invariant case so as to simplify notation. The results of this chapter

can be directly extended to the time-varying case.

Consider the discrete-time jump linear system with additive input

noise and scalar x:

Xk+ 1  a(rk)x k + b(rk)uk + "(rk)vk (9.1)

Pr{r k=j Jrk=i, xk=X} = p(i,j:x) (9.2)
k+l k k+1-

x(k o ) = x r(ko ) = r

0 0 0 0

Each transition probability p(i,j;x) of the form process is assumed to

be piecewise-convex or concave in x, having a finite number of pieces,

V... That is, the real line is partitioned into v.. disjoint intervals

by the points

- V i(0) < Vij(1) <,..., i(7.ij-1) < .ij0ij 0 (9.3)

and p(i,j:x) .. (x;s) if V. . (s-l) < x < V. . (S) , (9.4)

for s = l,...,v. Each function X..(x;s) is twice continuously
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differentiable in x over the interval (v. .(s-1),v. (s)) and either

2
3X (x;s) > 0 for all xe(v .(s-1),v (s))

ax 2  i3 i3

or

2
Vi (x,s)

< 0 for all xe(v..(s-1),v. (s))

We require that

p(i,j--x) > 0 Vi,j and x

and (9.5)
M

[ p(i,j:x) = 1 for each iEM. at each xeJR
j=l

The input noise process {v k } is assumed to be a white noise sequence with
k

a probability density that is piecewise-convex or concave in vk' having

a finite number of pieces, a. That is, the real line is partitioned

into 5 disjoint intervals by the points

- = a(0) < C(i)<.... <Oa-l) - a(F) = (9.6)

and at each time k

p(vk) = W(vk;S) if O(s-1) < vk < a(s) , (9.7)

for s=l,..., a. Each function w(v;s) is twice continuously differentiable

in v over the interval (a(s-1),a(s)) and either

2w2(v:s)
> 0 for all v e(a(s-l),G(s))

ax2

or

w(v:s) < 0 for all v e M(s-l),a(s))
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Since p (v k is a probability density we require that

p(v) > 0 (at each v)

and fop(v)dv 1

Consequently

urn p(V) =0

V-*.±oo

lim d*P (v) 0
V)± dv

2
lrn d p(v) =0
v-*±00 dv2

By assumption, the input noise is white:

Pr(v tv) Pr(vk) for k #n0(.)

We assume (as in Part III and Chapter 8) that the state (xk~r k is

perfectly observed at each k. The problem is to find the optimal

control laws

uk O k(xo ... 1x.k; ro,..., rk)

that minimize the cost cr,'terion

N-1
J (xlr) E R. R(r) + (x Irk+l (x ro o kk u k +l kQ T xNrN)
0 l

0

(9.10)

where the expectation is over (r k r. .. N Iand the input noise sequence
0
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As in the JLQ problems of Part III and JLPQ problems of Chapter 8,

we assume that the penalty on the control signal is quadratic, where

R(j) > 0 for each j e M (9.11)

The x-operating costs Q(x,j) and terminal costs Q (x,j) are assumed to
T

be piecewise-convex or concave in x, having a finite number of pieces,

J2. That is, the real line is partitioned into QJ disjoint intervals

by the points

( ) < J (1 ) < ... < J ( J < A

and

Q(xj) - Q (x;s) if i2 (s-l) < x < via(s) , (9.13)

for s = 1,...,V 3.

The real line is also partitioned into f5 disjoint intervals by

the points

-C =n (0) < n (l) < ... niJ-l < (n (9.14)

and

QT(x,j) = QJ(x;s) if 0j (s-1) < x < nJ(S) , (9.15)

for s = ,... .

we require that at each x value,

Q(x,j) > 0

QT(xi)> 0 * (9.16)

The term QT(XNrN) in (9.10) is a terminal cost charged in addition to the
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time-invariant x-operating cost Q(xN rN). Since {(xk,rk) k ko ,...N

is a Markov process we need only consider feedback laws of the type

uk  k (xk rk)

The JLPC control problem formulation (9.1) - (9.16) includes as special

cases the problems of chapters 3, 5-7 and 8. In the next section we

begin our analysis of this problem with an examination of the effects

of the additive noise, and how the solution approach of chapters 5 and 8

must be modified to handle this noise.

9.3 Reformulating JLPC Problems with Additive White Input Noise as

Noiseless Problems.

In this section we will describe how the basic solution approach

of chapters 5 and 8 must be modified when there is additive white input

noise in the x dynamics. As we indicated in section 9.1, this

modified solution approach involves the reformulation of the noisy

problem, at each time stage k, as a different (but equivalent) control

problem in an artificial variable k (which replaces xk). This

reformulated problem does not have additive noise (it is absorbed in

zk). We will derive and describe this reformulation process via two

example problems.

Defining the expected cost-to-go Vk(xk,rk) as in previous chapters,0k

and applying dynamic programming from finite terminal time k N, we

have the relationship:
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Vk(X k) k k+1- k+1 Xky)

k(+ E + r (9.17)

Vk+l (Xk+l'k+l) uk

for k = N-1,N-2,...,k
0

where

VN(xNrN=J) = QT(XN 'rN = j )

with

mN(j) - J(9.18)

and

N = 1(t) t = 1,..., - 1

From (9.17) - (9.18) we can, in principle, solve for the optimal controls

0

As in part III and chapter 8 , let us define the conditional expected

cost-to-go by:

V =j)  E Vk+l (xk+l rk+l) rk j (9.19)

+ Q(xk+l rk+l) xk

This is a function of xk+l. We can rewrite the minimization in (9.17) as

Vk(, + Vk (Xk+lrk=J) (9.20)

V kx~r=j) u.R(rk) E kl(kl r-)
uk

The expectation in (9.20) is over values of the input noise vk .

The conditional expected cost-to-go in (9.19) will have a piecewise
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structure

Vk~ (x~~l~j ( x ;t) for x e ~(t
k~ ~lkj k+1 k+l1 k+l "+

t = ,.. 1 (9.21)

where the xk~ intervals are

A=+y Ct Y ~t-i), Ct))W) (9.22)

Here

Yiik+l '' +1 k+l i1 k+

(9.23)

are the unique grid points obtained by superimposing the quantities

(t) t = ,. ~i-1} (x-operating costs grid)

{ (. t) t~,. v.-1} (form-transition probability

grid)

k~Ilt) t " "kl'-} (Vk+l1 k+l k+l= /
joining points)

for each i ec (924

The solution approach of chapters 5 and 8 might suggest that the way

to solve (9.20) is to convert it into the comparison of a finite set of

corstrained-in-x subproblems:
k+ls

Vk(xk r kj) {V kmmk k+l k+l

595



where the l+l subproblems are

Vk(xk~rk=) lXk+l e Ak+l (t)) min uk(j) + k+l (Xk+l rk=J }
k s. t .

Xk+l e A+l(t)

This will not work because of the additive white input noise. We

cannot choose x+I with certainty. Thus the subproblems above are not

well posed.

Let us now consider an example problem that is identical to example

5.1 (and 6.1, 7.1) except for the presence of additive input noise.

From its solution we will develop a general method for the reformulation

of (9.1) - (9.16) as a comparison of constrained subproblems that are

I, .1constrained in a deterministic quantity.

Example 9.1 (Uniformly Distributed Input Noise)

Consider the following system having uniformly distributed (in

magnitude) bounded white driving noise and m = 2 forms:

ck+l Xk uk + vk if r = 1

'k~l k
+i " 2k + Ukif rk = 2

p(1,2:x) =I 1/4 if lxI < 1

3/4 if 1Xj > 1

p(1,1:x) = 1 - p(l,2:x) p(2,2) 1 p(2,1) 0

deterministic, given xk rk and
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where the input noise sequence (v k is a white noise sequence with

uniformly distributed magnitude:

noi.se 0 IvI > 2
density pv ~/ v

hence

2~k 10 2
E{ 2 } = 4 vf2v 4/3 (all k)

-2

* and

E{v v 0= if k s0

We seek to minimize

m2 E x2 2 K r
I Uk k+11 XN 'T N'

uo '-N-1 k-O

where K (1) =0, KT(2) =3.

Once the system attains form r =2, it stays there and the

usual LQ solution applies:

Vk(x)k,r =2) = xk Kk(l:2)

uk~xkr =2 = -L (1:2) x
* * JC k k k

where

KN(:2) =KT ( 2 ) 3

a 2 (2) R(2)(K.kl(l: 2) + Q( 2 )J 4(1k+i(1:2) +'I]

Kl2)= R(2) + b2 (2)[ .(1:2) + Q(2)3 2 + k1:2

a(2) b(2) EKkl (2:2) + Q(2)] 2 [ k + 1(1:2) + 1J

Lk (1:2) -2=

R(2) + b (2) (K.k1(1:2) + Q( 2 )] 2 + K.~(1:2)
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Now let us examine what happens in form r =1. We are given that
N-1

_2V (XN,r =1) = x K,,= 0. Applyi.ng dynamic prograzzi.ng,N NT

V x r 1)= m 2 + ~ 2 +V
'N-i ( N-i N-i=l i IN_ 1 +E N N 'N NrN) XN-i

UN1

mi N + E~ xN + P(ili:x N) VN (xNI r Ni) xN 1

p(i,2:x )V (x ,r =2) N-iN N NN
UN-1

(9.25)

=min u N-2  + E~ x N p(i,l:xN) + 4p(i,2:x )N xN-
UN-i

r i
N-1

The expectation is over values of the noise v Nl We can influence the

probabilities p(i1 l:x ) and P(ls
2:x) by ou choice of ulPbut we

cannot precisely specify them because the value of x N depends upon the

noise vN~ as well as x n
N-1 N-i adUN-l.

4Substituting the noise density in (9.25),
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r(,1 
XN*I**N: *v

I N-

N-i N-i N-i1 + =

2 22

42
=rain {u1 + 1(xNi + UN-1 + v) 2 9(1,: iN- i+uw +v)

'N-1 -2 + dv

L4P(i,2:xN-i-i+v)J.

(9.26)
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If UNi is chosen so that IXNl + UN-l > 3 then

= XNl+UNl+VNl1>1 for all possible values of V , and there-

fore p(l,2:x N) 3/4 and p(l,l:x ) 1/4. That is, forl xN_ + U > 3

NN N_1 N-1

in this example, the value of the input noise VN-1 will not effect the

form transition probabilities; we will have

2 (llx+N+v) 13
(X N - 1 +v) 1  = 1 1U +v) 2

4 f N u + dv = (XNI+dv

-2 4p(l,2:X -2
4p12xN-1l+ N-1iV

S13 _12 13
=-(xN + -+-. (9.27)

4 -3

-If we chose UN- so that I XN 1 + uN1 <3 then the form transition

probabilities will depend upon the value of the input noise. In this

case,

2XN_+UN v+u)

Tif N-lN-l' J dv =

24p(1,2:XN_+UN_+V)

.- 1-3(X N-+UN-) 2-1 N-

-6 (XN I+UN _ +V) dv + +UNI)Idv+

-2 -1- (xN~+u,_)

16 (xNI+UNI+v) dv

,-. "i... 1 - I+UN-1)
1916

4 N-i uN-1 + 49/12. (9.28)" -1 (xN_ + U_ )

Thus we have different minimization problems, depending upon the value

of (x + U ).
N-1 N-1
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Surprisingly, in each case the expected cost term

2E (x VxNr x Nl rN 4l=lrUN l (9.29)

is only quadratic in (x-1 + UN-1). This will not be the case, in

general, for problems of type (9.1) - (9.16) having piecewise-constant

form transition probabilities, piecewise constant noise densities, and

piecewise-quadratic x costs. As we will see in the next example,

the cost in (9.29) is generally cubic in (xN-i + uNi) for such problems.

The expression in (9.28) does not contain cubic terms because of the

symmetric nature of the limits of integration and the fact that

p(1,2:x), p(l,l:x) and p(v) all have only three constant pieces. We

have chosen to study this somewhat unrepresentative example problem

here because it highlights the solution approach for handling JLPC

problems possessing additive input noise, without introducing extraneous

complications.

The following strategy for computing VNl1(xNI,rNl1=1) and the

associated optimal control law is suggested by (9.26) - (9.28):

For each of regions of (XN 1 + uN-) values, solve the constrained

optimization problem that assumes (xN_l + uN_) is in the specified

region. Once we have the solutions to these problems, we compare

them and obtain the optimal solution by choosing the smallest of

these for each value of XN I

As we have indicated, in this example there are three (x +UN) regions:
N-1 N-1
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(1) XN_ 1 + UNi -- 3 where p(1, 2 :xN) = 3/4t

+
(2) -3 < x + u < 3 where p(l,2:x ) 1/4 ifN- 1  N-- N

N-uN -l ) < VN_ 1 < 1 - (XNl+UNl)

and p(1,2:xN) = 3/4 otherwise

(3) + UNI > 3 where p(l,2:x =3/4

The three corresponding constrained control problems are:

VN_l(N_l,rN l=l1) min U 2 13 2 +13}
_N-I S't. N-1 +  4 ( x N - I + UN-I) 3

x +U < -3- (9.30)
N-1 N-i1

v (xNlrNii12)= min {U + (x + i) +

+<N- +N_ -'t

-3 + <3 (9.31)
- N---

2 13 2 131VNI(xN_,rNII3 m main -1 +--4(XNi + ) + (x +
U I s.t. 1 N-i

XNl+UN..3
+

(9.32)

The costs in the first and third problems are the same, because of

the svl, metrv of p(l1, 2 :xN) and p(v) about zero.
Nt

Consider the second (xN_ + UNP region:

+
<_X_1 + N-1 < 31

-3 <x +u <30-N-1 N-1-
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Differentiating VN-1 (XN-1 rN-1=12) in (9.27) with respect to UNl :

3VN_ (xN , 112)N-1N-1 =23XN 1 +( u_ (9.33)

VN-IN- I 1,2) 23

0 (9.34)u2_ 2

hence setting (9.29) to zero yields the minimizing

(-i~2) -19

UNI_rN_.li2) = (--9) XN_1 = (-.82609) XN (9.35)

with the resulting cost

9 2 49
VNI(XN_ ,r_= - = (.82609)x + 4.0833.

V- -'N-i 23 "N-i 12 N-i1

(9.36)

But in (9.35) solves (9.21) only if the resulting (xNl+ ui)

value satisfies the constraint

IxN_l + uNlI <_ 3- (9.37)

This holds if and only if

-17.25 < x < 17.25

From (9.34) we see that for "Ni > 17.25, the best choice of uN_1

that satisfies (9.37) is

N-- 3 -XNl

The resulting cost is
VN_- (3- - 2 + (-3)2 + 49

-iN-i 4 12

2 335
XN -6x +

N1 N-i 6I
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K Similarly for xN 1 <-17.25, the best choice of UN-1 that satisfies (9.37)

*. is

u -3 -xN-1 N-i

with resulting cost

2
VN- 1 =x + 6XN_ 1 + 335/6

Thus the optimal cost-to-go in (9.31) has a three-piece quadratic

structure in xN_1

The other two constrained control problems (9.30), (9.32) have two-

piece quadratic structures. The optimal expected costs-to-go for all

three constrained subproblems are:

V (XN, ) = (.7647) 4.333 if xNi <-12.75

2
1 -l + 6XN-l + 42.58 if xN 1 > -12.75

(9.38)

2
+ (6x + 55.83 if xN <-17.25

N-l (xNi 112) Nf
2

(.82069)xN- + 4.083 if -17.25 < xN 1 < 17.25

"- - 6x + 55.83 if 17.25 -xXN_ 1  N-1 - 1

(9.39)

2V~~l3 XN_ - 6XN_ + 42.58 if XN_1 < 12.75

.7647 x i + 4.333 if xN-i > 12.75

(9.40)

and the corresponding control laws are

604



uN-1(xN_,l111) .7647 xN- 1  if XN-1 < -12.75

I-X 3 if > -12.75
N- N- 1

(9.41)

,(x 112) - 3 if x < -17.25

'N- 1  1 2XN 1  N-1 -

-.82069 XN- 1  if -17.25 < XN_ 1 < 17.25

- 1 + 3 if 17.25 < N-1

(9.42)

(x +13) = 3 ifX < 12.75
N-IN1 i )-N- 1 + N-1 -

-. 7647 XN 1  if xN-1 > 12.75 (9.43)

Having solved the constrained problems (9.30) (9.32) we are now ready

to compare them:

V (x lrNll) rin VNl(xNi lrN I1 It) (9.44)
t-i,2,3

This is done graphically in figure 9.1. Choosing the lowest of the

three constrained costs at each xN_l value, we see that the optimal

expected cost-to-go of control law, and optimal (N- 1 + 'Ni) values

are as listed in table 9.1.
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V (c

N-1I1 1-IAN-

SC') S(1) S (4)

Figure 9.1:, VN- (x N-1r N-=1) in example 9.1 and subproblem costs;

v l(x 111) is indicated by the dashed line,

V N-1 (x N-1 i112) by the dotted line and VN-i (X N-1'l113) by the

dot-dash line. The optimal cost V (x r _=-l) is
VN-i N-i' N-

indicated by the solid overline.

606



if VN_(XNI~rNI=l) UNIxN_,rN_=1) xN_ +UN_
ifVN-1 ( -'rN1) 'N- Ix N-i' N-i"1 N-i N-i

2
x-1 < -12.75 (.7647)x + 4.333 -. 7647 XNl .2353 xN_

2
-12.75 < XN- 1 < -8.655 xN_l + 6XN- 1 + 42.58 -xN - 3 -3

2
-8.655 < XN_ 1 < 8.655 (.8207)x_ + 4.083 -.8207 x .1793 xN

865<1.5 x2 -6xN_ + 42.58 -Nl+ 3+  3 +
.55<XN_ 1 < 127 N_1  N-1_

2

12.75 < (.7647) xNi + 4.333 -.7647 .2353

Table 9.1 Optimal Expected Cost-to-go, Control

Law, and x + %-I from CxNl,rNi=1)N-1 X-

in Example 9.1.

In figure 9.2 we can compare the last-stage solution of this problem

and the noiseless version of this example (example 5.1 in Section 5.3).

We make the following observations:

1. In both example 9.1 and example 5.1 the optimal expected

cost VN I (xNlrNl=i) is piecewise-quadratic in XN_1

and the optimal control law is piecewise-linear. When we

go back another stage in time, the optimal cost

VN 2 (xN_2 ,rN 2=I) can be obtained using a similar approach.

The piecewise-quadratic structure will be lost, however,

in example 9.1.

607



-7- --- '7

+613 /01/

.00,

-6.75 -1.75Z.;'S .7

(A) -1 N-i ti-I -

I I >iI -

r 1 1 4 1 4-3~I I -54 X 4.5

f KEE

"Sp
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2. The endpiece control laws in both examples are the same:

U (x ,r =l) (-.7647) xN_'

'N-i N-i' N-i1N-

In both examples this control law corresponds to making

IN1 >

with certainty. In example 5.1, where there is no input noise,

this is done by making

.1

IxN-1  %11 >14

In example 9.1 we must make

'XN-l
5,il

;-- ~l+ -~i > 3 :

to guarantee that IxN1 > 1 (since no matter what value in

(-2,2) the noise vN 1 takes, we will have IxNI > 1).

3. In example 5.1 we use control

Ui=X = 1+
'N-1 -X N-1

to hedge to point xN = -1+ when

8.65 = 6N_(1 ) < xN < Nl(2) 12.75.

In example 9.1 we cannot place xN with certainty. However

we can place (x + u In example 9.1 when
(N-i N-)

8.65 < XNl < 12.75 we use the control

N-1 N-I
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to obtain

(x-i + uN1- -3- 0

This corresponds to using control uN to guarantee

x < -1 with certainty.
N-

4. Note that in example 5.1 we hedge-to-a-point to get xN inside

(-1,1). In example 9.1, however, we hedge to keep xN

outside (-1,1) even though the probability of failure is

larger there. The reason is that for

8.65 < < 12.75

it is better to keep xN in the disadvantageous p(l,2:x)

pieces IXNI > 1 with certainty (by making XN- 1 + uNl > 3)

Sthan it is to risk having either 1xNj > 1 or IxI <1

(by making IXNl + uN-lI < 3). That is, it is not ,otth

snendina extra control enercv to try to aet xN inside the

advantaaeous p(l,2 :xN) piece because we can not do it with

certainty.

5. As in the JLQ problems of chapter 5, the optimal controller

has regions of avoidance. However for example 9.1 they

are regions of (x-i + u-i) avoidance (instead of xN

avoidance). From Table 9.1 we see that the optimal

controller chooses uN- so that (XNl + ui) does not

take values in the intervals

.-. (-3+ , -1.55) and (1.55, 3)
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Example 9.2 Let us now modify example 9.1 so that the expected cost

term

2
EtxN + V (x1N IN) IxN-lrN-1=" uN- (9.45)

is piecewise-cubic in (xN1l + uNl,). Consider the control problem of

example 9.1, but with

p(1,2:x) =1/4 if (9.46)

13/4 if x > I

In form r =2 the solution is the same as in example 9.1, and

(9.25) - (9.26) apply in form r = 1,

If uNil is chosen so that (l+ui)> 3 then xN > 1, and there-

fore p,(l 2:x )=3/4. The expected cost (9.45) in this case is given

by (9.27).

If uN-1 is chosen so that (x,-l + uN-i <-1 then XN < 1 with

certainty, and therefore p(l1 2:xN) =3/4. Mhen this is the case,

Fp(l,l1x +i u +v)
21 'N-1 N-1

-2 xNp-1l x~ + UN-1 + V
1 d

4. N- 2 72
+u +) v- x + 1 )2 + 7/3. (9.47)

16f (N-i 4 N-l~v N-l4 (N
-2

If we choose uN_1 so that -1 < (xNl1 + uN-1) < 3 then the form transition

probabilities will depend upon the value of the input noise. In this

case,
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2 hp(,:xN 1  UN 1 + v)
1f 21 - -

(xN + UN-I + V) + 1)1 dv

-2 i

L 4p(i,1:xN

1-( (XN-+uNl1l

2 7f 2 +2

2N- i3) (XNI + UN- ) + v16-i i-6+ N-i

( (xN_1  uN-1) 3 + (xN_ 1  - -(_l) 2 83

8 Ni Ni 2 -i'N1 2 N-i N-i 24+

(9.48)

Thus the expected cost in (9.45) is piecewise-cubic in (xN_ + ui).

V (x ,r =1) is obtainable by comparing the solutions of the
N-i N-i N-i

constrained-in- (xN-1 + u_l) subproblems.

VN-I (xNIrN-=II) -min u 1 + (xN-i + UNi) + 7/3
UN 1  s.t.

(XN-l+N I ) <-i

(9.49)

VN_ 1 (xN-l'rNl=1
12) m rain

-i< (xN-l+UN I )<3 3
- (XN_1 + uN_l

) + 83/24

+ 3 (x2 13

VN~lXN~~rNl~13 m nin -i + -(NI + UN) + -

SUN 1  s.t.
3< (x + UNl)

N-i1 -i

(9.51)
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we will defer solution of these subproblems and the determination of

N-ix NlrN =1) until section 9.8.

Let us return to the general control problem of this chapter. We can

follow the idea used in the above examples and reformulate (9.20) as a

comparison of a set of constrained subproblem solutions. Let zk~

be the value that xkl, would have given r and assumina that the ioise

is zero:

zk+l ar) k + b (r k)uk(.2

That is

Zk+l xk+l - Erk k

We define the z-conditional expected cost-to-go as follows:

V (xk+l, r j
Vk~ (k~lrj)~ {k+l xk~l r

(xkl Irk~l zk~ +a ~k+ ~~

Q x rz aix+ b(j)u k

~V ~(a(j +b ( j) uk+ (j) vk, rk r)

Qa(j)xk + b(i)uk + (jv rk~

(9.54)
r

=E 
1 Vk 1(x k+llrk=j) Xk~uk

The minimization in (9.17) , (9.20) then becomes

Vk(xklr) mi 2 Vklzlrj;(9.55)
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As we shall see in later sections of this chapter, the behavior of

this z-conditional expected cost function is intimately related to

qualitative properties of the optimal controller and combinatoric

properties of the solution.

We can solve for Vk(xk rk) in (9.55) by comparing (at each xk

value) a finite set of constrained-in-zk+l subproblems:

V k(xkr = m in {Vk(xk,rk=jlzk+l 6 e 1 (t)) } (9.56)kk (kkk
t=l,...,

where the subproblems are
k+l

Vk (x,rk=jlzk+1  (t)) = a .in' R(j) + Vk+l(zk+l Ir k = j)

zk+l eq+l (9.57)

AjVk (Xk,rk=J It)

and the A (t)are intervals of z values.
k+l k+l

In principle, we can solve for the optimal controllers for (9.1) -

(9.16) at each time stage k and in each form j e M if we can solve

(9.55) - (9.57) subject to (9.52) - (9.54).

We have now incorporated additive input noise in the problem

solution approach of chapters 5 and 8, by reformulating the noisy

JLPC problem (9.1) - (9.16) as a comparison of subproblems constrained

in the deterministic quantity Zk+ 1 (given uxk~rk). Note that if

there is no input noise then zkl = Xk+ 1 and V (z 1 r=J) =
k~l xk+k+l k+l k

V k+l (xk+llrk-j).
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Two issues must be resolved before we can use this reformulation

to solve (9.1) - (9.16):

(1) How do we obtain the partition of zk+l values (that is,

the intervals A3 (t); t = i,...,I) in (9.56) - (9.57)?
k+l k+1

(2) How do we solve the subproblems in (9.57) when Vk+l(zk+llrk)

is not piecewise-quadratic in Zk+l?

We address these questions in the remainder of this chapter.

9.4 Solution of a One-Stage Example Problem:

In the previous section we described how a JLPC problem specified

by (9.1) - (9.16) can be transformed into the comparison of a finite t-

number of constrained-in-z k+ subproblems. In this section we will carry

out this reformulation for one stage of an example problem, and we

will solve for the optimal controller.

As we obtain the solution of this example problem we will

make a number of observations regarding JLPC problems possessing additive

noise. Using insight gained from the solution of this example problem,

we will develop a general one-step solution procedure in section 9.5,

and two approximate (suboptimal) controllers in section 9.9.

Example 9.3: This example is the same as example 8.4, except for the

inclusion of additive input noise. It involves x-costs that are piece-

quadratic in x, form transition probabilities that are piecewise -
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constant in x, and a piecewise-constant input noise density.

We consider a system with R - 2 forms where

(normal Xk+l xk if rk =1
operation) + 7k

(failure) Xk1 = Xk if rk = 2

p(l,2:x) --(1/4 if 1xl < 1

3/4 if lxI > I

p(1,1:x) = 1 - p(1,2:x) p(2,2) = 1 p(2,1) = 0

(noise p (v) 3/8 if I v1 < 1

1/8 if 1 < lvi < 2

0 if lvi > 2

hence
2E{v} = 0 , E{v } =5/6 V k

and
Ej{uk v} 1 0 for k 6 s.

In the notation of section 9.2 we have noise-density piece boundaries

a(1) - -2 a(3) = 1 (c = 5 pieces)

a(2) - -1 a(4) = 2
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We seek to minimize

N-1

mm E(~ u+~ 1  rk+l " + QT(xN rN)}

where

Q(xk+llrk 1-2) =0

Q (XN r 
2 ) =1000.

T N

and

2

2 2 - .5 -. 5 <x <0
l.Sl k+l k+l

Q(x~k+lr =1) =)

kk~l 2klx~

2
x k+l .5 < (~

As in example 8.4, in form r =2 (i.e.'in the failure mode) the optimal

expected cost-to-go and control law is

V k(xlC rk=2) =1000

u~k(xk~r k -2) -0

at all times k. In form r=l we have

V (x r =l) =0
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As in example 8.4, the conditional expected cost VN(XNIrNI=l)

for this problem is

2 2
Sx l) =(.25)xN + 750 xN -l
VN N'l N

A 2 -

V N(x;2) (.75)x + 250 -i < xN < -.5

A 2
V(XN ;3) = (-1.5)xN - (.37 5)xN + 250 -.5 < xN < 0

VN(xNlrN=l=1) VN(xN ;4) (-1.5)xN + (.375)xN + 250 0 < xN < .5

V (x ;5) (.7 + 250 .5 < x < l
VNx N N

A 2
V (x ;6) (.25)x 2  + 750 1 < xN N- N

(9.58)

where we have a partition of xN values with N = 6 pieces, specified by

YN=l) - - Nl(5)) - (- A) N(4) = (0,.5)

y =2) --.5=-- (4) AN(2) - (-1,-.5) A N(5)-- (.5,1)

yN = 0 (3) - (.5,0) 4N(6) = (1, )

(9.59)

VN(XN IrN-ll) is discontinuous at XN = ±1 (the form transition probability

discontinuities).

The grid points in (9.59) are joining points of the x-operating

cost Q(x,rl) and discontinuities of the form transition probability

p(l,2:x).

r ~ 618
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Now let us compute the z-conditional expected cost-to-go VN(zN IrNl=l).

From (9.54) we have

A A^

VNzjr~l p(rV( vIrl -)dvNNN- l )  VN(ZN +  N ) (9.60)

In this example the input noise density p(v) is piecewise-constant with

S= 5 pieces and p(v) = 0 over the leftmost and rightmost pieces. Here

VN(xNlrNl=l) has i= 6 pieces. Thus we can rewrite (9.50) as a sum

of

( - 2) = 18

integrals:

- max C(s-1) min [N (1) -N, a's) ]

f (V:S) VN(Z v;l)dv

C(s-1)

V N l r = / N1=) - ma- ( .miny (N (t) -z ,a s) N
(vs)-Y~ +v!!t)dv}/ t min((s),max[Y (t-l)-z ,O(s-1)]

S-n2 CY(s)

+ fW(v;s) V (z + v;PN)dv
+N N

mini a(s), max { (-l)-z, o(s-l)|}]

(9.61)

(where VNCZN + v:t) denotes the tt h piece of VN (Z + 1NrNll), as in
th

(9.21), and p(s:v) denotes the s piece of noise density p(vk) as

in (9.6), and the YN(t) are as in (9.59)).
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The numerical values of the limits of integration in (9.61) depend

upon the value of zN* This gives VN(zNi rNI=1) a piecewise structure

in zN
N

We have a boundary between pieces of VN(zNIrN1 1=) at each zN

value where one (or more) of the limits of integration (9.61) changes.

It is straightforward to verify that for each s = 2,3,... ,6-1 = 4

and t = 1,2,...4 N-1=5 we have

max {O(s-l), min(yN(t) - ZN,a(s)) = min{I(s), max(YN(t) - zN , 0(s-))}

a (s) if zN < YN(t) - a(s)

= YN(t) - zN if YN(t) - a(s)< zN < YN(t - O(s-l)

a(s-1) if YN(t) - a(s-1) < zN

(9.62)

The boundaries of the VN(zNIrN1=1) pieces' domains are the set of values

{YN(t) - a(s) s=2,... ,a-1; t=,...,N-l}

which, for this example, are

{-3, -2.5, -2, -1.5, -1, -.5, 0, .5, 1, 1.5, 2, 2.5, 3}

Ordering these 13 quantities from smallest to largest, and denoting

them by yN(t) (t1l,...,13) we obtain a partition of the real line

of zN values into = 14 intervals,

N N

(t) (YN(t-l), YNi
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where YN (0) 0 , YN (14) + as follows:

A (1) ( (0) Y (1)) = (-=, -3)N N N

4N(2) = (YN(1), YN(2)) - (-3,. -2.5)

(3) - (Y (2), YN(3)) = (-2.5, -2)

4N(4) - (YN(3), YN(4)) = (-2, -1.5)

4N(5) - YN(4), yc)) = (-1.5, -1)

AN (6) = (YN(5), yN(6)) (-1, -.5)
A% A A

A(7) - (yN(6), yN(7)) - (-.5, 0)
A% A A%

AN(8) = (YN(7), yN(8)) - (0, .5)

AN(9) = (yN(8), y(9)) - (.5, 1) (9.63)

AN(10)= (YN(9), YN (10)) (1, 1.5)
A A% A%.

A(11) = ( (10),yl (11)) (1.5, 2)

AN (12) (yN (1l),YN (12)) - (2, 2.5)
A A A

AN (13) - (yN(12),yN(13)) -(2.5, 3)
A , A A ,

AN (14) = (y (13) , y(14)) (3,-)

Applying the integration limit values specified by (9.62) to the

computation of (9.61), we can obtain each VN(ZNIrNlI=I) piece.

These calculations can be simplified if we first calculate
A

V (z :1) (i.e. for zN e A(l)) and we then successively calculate
-A

(for each t = 2,..., -) the piece VN(ZN t) from VN(zN;t-1), by

adding or subtracting (as appropriate) those integrals in (9.61)

whose limits change when we move from AN(t-l) to AN(t).
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"-'. For Z G = (- ,3) we obtain
N N

V-, (z +;-1+

QNZN;1 f 8 VN(ZN + v:+) dv 8 VN(ZN + v;)dv-2 (9.64)
121

+ *vN(zN + v;l).dv

= (.25)zZ + 750.208
N

Fo N&(') , each of the other fifteen integrals in (9.61) has the
same upper and lower limit of integration; hence they are zero. As is

evident in (9.64), xN = ZN + v is in N (1) for any noise magnitude in

(-2,2). Consequently VN(zN;1) is quadratic in zN .

For zN e AN( 2 ) = (-3, -2.5) we have

I 2A A .
(z ;2) = V (z 8) (V + v;2) VN(zN + v;1)ldv

N N N N N
-- N

(.020833)z + (.375)z - (62.25)z + 562.896.
N N N

Following this procedure for the remaining zN intervals, we obtain the

z-conditional cost for this example:
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This z-conditional cost VN (ZN Ir N-l ) is continuous in zN. The

additive noise smooths out the discontinuities in VN(xN'rNi =1) at

For this example problem the *P = 14 constrained subproblems are
N

2 1
V (- m t uNl + v (z ;t) (9.66)
N-1l - N-1-l VN zn~

'N1S.t.
zN e 4M(t)

NN

for t = 1,2,..., 'N = 14. Substituting

U-i = ZN - a(1) XN_
u- zN - XN_ (9.67)

U, in (9.66) we obtain

V_l(xN,r_1 = mn z 2z x +
N _lr- N-l-1) i N N-1 1 -

zN e A(t) + VN(ZN;t) (9.68)

Each of the subproblems in (9.66) can be solved analytically. The

extreme-piece subproblems (i.e., t=l and t=14) have optimal expected

costs that are piecewise-quadratic in XNl with two pieces:

lU 2
I = .2xN-1 + 750.2 if XN-1 < -3.75

V XN 1 N~ ~r N-1 =11N1)- 11,R 2
X 6x + 761.5 if xN > (1)
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1-. U .,U

'N-1 (,-l' V -10 1,Ri

1,

N-1' -N- 1  if XN- 1  >

"f 14,L 2

V =, XN_ - 6x, _+ 761.5 if XN- 1 < 3.75

:(xN- =i4 -N

= .2xiN + 750.2 if x > (14)

,lx.. 1U= -. +2X if7 2_ 1 > IN_1 (14)

" x 14,U N-I N

I  and VN are quadratic in XN because z ) and (z :14)

quadratic in ZN*

The other subproblems in (9.66) for this example have a 
three-piece

solution structure:

V ' L (xN l,1) if XN < _ ( t )N-1 Nl - -1

VNJ(xN,r=iIt) = tU (xNi1,) if N-i (t)< XN1 < ( 1 (t)

V--, (xN 1,1) if (N-l(t) < XN-

(9.69)

with

-l(t) < G-it)
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tL
We can find the actively constrained cost pieces V t'(x N-,l1) and

v (X _,1 ) in (9.69) quite easily:

* t,L

0 For t =2,...,N =14 find VN_ (xN l1) by evaluating

(9.68) with zN = yN(t-i)

t,R
* For t = 1,..., N5=13 find V (x ,l) by evaluating

N-1 N -i N-i'

(9.68) with zN = YN(t)-

Following these steps for this example we obtain-

1,R 2,L 2
VN_ 1  = VN_ = X + 6xN_ 1 + 761.5

2,R 3,L 2
VN_ 1  =V +5x + 726.8

V- N-i xN-i N-1
3,R 4,L 2
N -i =N-i XN-i 4 N-i 9.

4,R 5,L 2V = V _ = 1 + 3X 596.8
N-i _'- N-i N-i

5,R 6,L =VNl =V_ 1  =+ 2xN_ 1 + 501.5

6,R 7,L = 2 + 438.0
N-1  VN- N1 + xN- 1

7,R 8,L 2 (9.70)
VN-i = VN-i = XN-i + 375.3

8,R 9,L 2 + 438.0
N-1  N-i VN- 1  'N-1

9,R = 0L= - 2x +501.5
VN-i VN-i XN-i N-i

10,R II,L 2  3x +596.8
VN-i VN-i XN-i Ni

I1,R 12,L 2  -4xN1 +692.7
VN- VN-i XN-i N-

12,R 13,L 2 - 726.8
VN- VN-i XN- N_ -

1l3,R v14,L 2 - +761.5
N-i v_- xN- 1  -i
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1,R 2,L3

2,R 3, = ~ 2.5

3,R = 4,L = X~ 2

4,R = 5,L = 'Ni -1.5

5,R = 6,L = Xi-

6,R = 7,L = 5

'N- 'N-1 -1~N (9.71)

8,R = 9,L = XNi+5

9,R 10i,L -x +

10,R 11l,L i
'N1 - N-1 = '- 1.5

11 R 12,L +
UN-i ' N-1 _XN-1

12,R = 13,L X i--2.

13,R 14 liL _ + 3
'N-i uN-i Ni1

From (9.69) we see that the actively-constrained cost-pieces

t,L t,R
N_1 and V _]) of VN (xN ,r =l1-1t) will always be quadratic

in N-1 N-i' X' XN_ terms) regardless of the form of

V (z ;t).
N N

The unconstrained costs VN1are not quadratic in x N-1 In general.

The difficulty in solving for nonquadratic Vt"U may necessitate the
N-i

use of an approximation to V Nil(x.,r N-1_it). One such approximation

is as follows:

627



For t=2,3,... ,-1N- 13, each subproblem's optimal cost

VN-1 (x N-I'rN- =1It) is bounded above at every XN-1 value as

follows:

A t,L

VNI(X 14rN l=lIt) < VNl(t) = $V t " (xN 1,l) if xNi < aN)l(t)

(xR ( ,1) if xl (t)

" - -- N-N-- -- 1

(9.72)

where we define

(t) value where tL ,)
"-N- XN-1 N-i (xN-1

(9.73)

and V'N- (XN-'l) intersect
N N

Note that

@N-1 t - (t) < N-I1 (t)

Using these upper bounds on the subproblem optimal costs, a suboptimal

approximation of the optimal expected cost-to-go,

V_l(X_l,r_ = {VN xN,rNIIt)} , (9.74)

tV-ll,..N-=l t)N

can be obtained by performing the following comparison at each xN_

value:

VN-I NIrN_1=i) N 1NI NIi) I(XNl,r= 14)

(9.75)
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This approximate controller involves the comparison of cost functions

that are all piecewise-quadratic in XN. This comparison can therefore

be carried out using the JLPQ algorithm of chapter 8. The resulting

suboptimal controller has an expected cost-to-go that is piecewise-

quadratic in xk+li and a control law that is piecewise-linear.

The suboptimal controller (9.73), (9.75) can be interpreted as

follows: for each XN_1 value we either

Sue the left-endpiece of the optimal controller,

Le 1,U,
N-l(xN-ll) = UN-l(xN I )

or

* hedge to one of the i N- = 13 joining points of the z-conditional

cost VN (zNIrNl=); that is, we hedge one of the YN(t)

or

* use the right-endpiece of the optimal controller
Re 1 14,U, ,
UNeI (N-l'l =UN_ 1 XN_ 1 '

For this example the intersections 02_l(t) of (9.73) are as follows:
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Vt,L adVtR
SN-1 a VN-1 Value of

t,L t Rintersect at V and V
N-1 N-1

~2 (t) =at2 (t)
N-i N-i

2 -34.7 1757.

3 -34.1 1719.

4 -95.9 9505.

5 -95.3 9393.

6 -63.5 4407.

7 -62.7 4307.

862.7 4307.

9 63.5 4407.

10 95.3 9393.

ii95.9 9506.

12 34.1 1719.

13 34.7 1757.

Table 9.2 Intersections of Constrained Costs

in Example 9.3
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Performing the comparison in (9.75) we find that the approximate

controller is given by

lV'U  22 <-2.4
= .2xN-1 + 750.2 if X N-1  21.648i!N-i

(N-1 r N-1 v 7 ,R v8,L N + 375.3 if -21.648 < XN_1 <21.648

V14,U .2_ + 750.2 if 21.648 < x= X~N_

(x < 21.648

{u4IU= -. xN1  N-
UN,(xirf=-217R648L <  <21.648

-1(XN-l'rN-l = = u7 '  u N- 1  if-168 N-1

u 1 4 U  -. 2x if 21.648 <

N-1iN-

(9.76)

This suboptimal controller has three obvious advantageous properties:

(1) it is obtained without computing the inactive-constraint

costs Vt 'U for t 1, N

(2) All of the comparisons in (9.75) are between quadratic

functions, so they can be easily obtained using the

quadratic formula.

(3) The resulting controller is piecewise-linear in Xk, which

facilitates implementation.

To investigate the accuracy of this approximate controller for this

example, let us return to the optimal solution derivation. The inactive-

631



constraint cost pieces Vt 'u in (9.69), when they are valid, are not

quadratic in XN-1 (in general), so they are more difficult to determine

than the active constraint costs. We will demonstrate how they can be

obtained by considering the subproblem

-(N r 117) =mi 2 7 (9.77)
N-i s.t. 'N- 1  VN(ZN;7)

-. 5<z <0

in detail. From (9.65) we can rewrite (9.77) as

V =min (.0416667) 3 (.7) 2

N-i~~~'- z -50 ~~~ N (9.78)

+ 375.298 + x
XN-i

Differentiating with respect to zN we have

vN_ 1 (xN_ 1 ,r_1--117)
= (.125)z + (2.75)z - (124.875 + 2x

aZ N N N N-1

(9.79)

2vN-1 (xN_ 1 ,rN-1=17)
= . 2 5ZN + 2.75 (9.80)2N-( ~zN

N

From (9.80) we see that

2
V (xN ,rl=l 17) ^N-i N-> 0 for zN e A (7) = (-.5,0) (9.81)

2 N
Oz N )
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Setting (9.79) to zero and solving for zN, we obtain the stationary

points of V _(xl,r N-=l17):

z = -11 \,120 + 16xN-1 (9.82)

N-1

If XNl < -70, there are no stationary points. From (9.79) we see

that if X-i < -70 then

> 0 , ¥ zN
.ZN

hence the minimizing zN in (9.78) is on the left boundary of AN (7)

(ie. atN F ~
(i.e., at z ) when x < -70.

From (9.81) we have that the optimal zN value in (9.78) is given

by

z =1-1 + V11I20 + 16N_

ZN = 1+N-i

if this zN is, in fact, in AN (7) = (-.j,0) (and xNi > -70). That is, if

-63.09375 < xN_1 < 62.4375

When XN- 1 < -63.04375, the minimizing zN in AN(
7) is on the left

boundary:

7,Lz N -

633
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7,L

This is obtained with control U N-I (x 1l). if x -62.4375 then
N-i'N-

the minimizing zN in (7) is the right boundary
N N

7,R
zN =0.

This is obtained using control uR (xN-1,1) when

-63.09375 x XN-i < -62.4375

then the minimizing zN in (9.61) is

= N -11+ 12 + 16x'N-1

this is obtained using the control

r. 'N-1 N-i-N

The resulting expected cost-to-go is

vN l[ x- 1 + 22xN- + 1859.83

Following this optimization procedure for each subproblem in

(9.68) we obtain the subproblem solution joining points 9 N-(t),

0 N (t), the costs ' lx~ i) and the controls u~(x 1) as

in (9.69). These are
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NU 2 + 750.2
vN-i .xN-i1

-
2 ,U  2 '+ 44.00_x + 2376. + C-61.67 - 1.333x N .1480 + 32X
N-I N-i N-1 N-1 N-

3,U 2

VN- = XN1 - 4.50
9XN 1 + 422.4 + 56.29 + 1.833x N] .-69.14 - 2 .286 XN 1

4,U 2
N-i XN - - 20.67xN_ 1 - 1564. + [118.8 + 1.3 3 3 NI 1 Y"-1900. - 21.3 3 XN- 1

v5,U 2

-I XN- I - 4.754x N 1 - 130.3 + (123.8 + 1.333xN 1] /-495.1 - 5.3 3 3XN 1

6,U 2

VN-I N-i - 3.929XN_ 1 + 134.4 + (41.22 + 1.333XN I] V-565.3 - 4.571XN-1

V7 , TJ 2
N-I XN-1 + 22x N 1  + 1860. + [-93.33 - 1.333x NI ] '1120 + 16XN 1

8,U 2

N-i XN- 1 - 22x + 1860. + [-93.33 + 1.333xN] ,I120 - 16X
N-i N-i N-i

9,U 2

N-i - N-i 4 3.929xN 1 + 134.4 + (41.22 - 1.333x NI ] /-565.3 + 4.571xN 1

o,u 2
V-i XN-1 + 4.754xN_1 - 130.3 + (123.8 - 1.333XI V-495.1 + 5.3 3 3XN 1

N-iN-i]N-

N-i XN-1 + 20.67xN_ - 1564. + (118.8 - 1.333XN I] .-1900 + 2 1.3 3XN 1

12,U 2

N XN- 1 + 4.509xN 1 + 422.4 + [56.29 - 1.833x NI ] .-69.14 + 2.286XN 1

-1 X2-1 -44.OOXNl 2376. + C-61.67 + 1.333XN1] /1480 -
3 2XN 1

14,U 2
-i .XN- (9.83)
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2,U

2,U -22 + /1480 + 32x
UN- 1  = N-1

3,OU
N 1  = -XN-1 + 1.804 - Y-69.14 -

2 .2 8 6 XN_1

4,U - XN_ + 10.34 - V-1900. -
2 1.3 3 XN 1

5,U

UN-1 - XN-1 + 2.377 - -495.1 - 5.3 3 3 XN-1

6,U

UN =- CN_ 1 + 1.964 - .-565.3 -4.57x

7,U1 7 X~i - 11 + V1120 + 16xUN_1 N-i

8,U
UN1 -XN 1 + 11 - /1120 - 16xN 1

mm 9,U
9,_1 = -XN_1 - 1.964 + v-565.3 + 4 .57lXN

Ul~

N= - 2.377 + V-495.1 + 5.333xN_1

11" , - 10.34 + -1900. + 2 1.3 3 XN_. N_1  -'N-1 N-

"" 12,U
UN_1 = -XN_1 - 1.804 + V-69.14 + 2 .2 8 6XN 1

13,U

1,-1 = -XN- + 22 V'1480 -32XN 1

14,U

N-1 -"8XN-1

(9.84)
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with e _ (t), (3) N-t) as listed in table 9.3 below

t eN1(t) N-1 (t)

1 -3.75

2 -34.9688 -34.3672

3 -38.3531 -36.4484

4 -96.2037 -95.6370

5 -95.6494 -94.9694

6 -125.577 -124.983

7 -63.0938 -62.4375

8 62.4375 63.0938

9 124.983 125.577

10 94.9694 95.6494

11 95.6321 96.1968

12 36.4484 38.3531

13 34.3672 34.9688

14 3.75--

Table 9.3: Joining Points of Constrained

Subproblem Solutions

Vl (x lr 11lt) of Examp!Q 9.3
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Performing the minimization in (9.74) we obtain the optimal expected

cost-to-go

l'U 2
v1 ' U = .2x2_1 + 750.2 if xN- 1 <-21.6.

VN (xN lr N  =I) = 7,R = 8,L 2
N-1 N-1N- 1 v + 375.3 if -21.6. < x < 21.E

N-i VN-i - N-1..-V14, U 2
= .2xN_- + 750.2 if 21.6. < XN 1

(9.85)

iu
U = -. 2X if x < -21.6

XN-i N-1

N-i N.-~tN7,U 8,L

u U =u x if -21,6 < xN 1 < 21.6

zN-(x N-1 N-i1 = N- 0N- -16 1.6

u= .XN if 21.6 < x

N-1 N-i

~(9.86)

z l 'u = .8XN_ if XN-l< -21.6

--(xz1) z 8,L = 0 if -21.6 < XN_ < 21.6.
zN(N-l'rN-1=1  = N-

lZ14 , U  .= .SN- 1  if 21.6- < x N-1

(9.87)

This optimal controller (9.85) - (9.97) is identical to the approximate

controller (9.75) for this example problem. That is, at no point other

t,U
than the endpieces are any unconstrained costs VN _ optimal.

Comparing the solution to example 9.3 with that of example 8 4

(same problem but without noise) we note that the optimal controller

in the noisy case is simpler than in the noiseless case. In examp.e 8.4

1

graphically, or by finding the intersection of all of the subproblem

solutions6
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7I

(figure 8.4), VN-1 (x N,r N-11) had m N-1(1) = 9 pieces. In example 9.3,

V_(x ,r =1) has only mNl(1) = 3 pieces. The presence of additive
VN-I N-I, N-ImN-

input noise in example 9.3 makes many of the optimal strategies of

example 8.4 (in particular hedging to x = -1+, -5, .5, i) impossible.

We note that the optimal control laws in (9.86) are the same as the

endpiece and middlepiece control laws of example 8.4 (see table 8.4).

The resulting optimal expected cost is, of course, higher for example 9.3

because of the added uncertainty caused by the input noise.

In this section we have obtained the solution of an example problem

having nonquadratic VN (zN r )pieces. In the process we also developed

an approximate controller (which, for this example, yields the true

optimal). In the next section we will derive a general one-step

solution to JLPC problems described by (9.1) - (9.16), patterned after

the solution of example 9.3. The investigation of approximate solutions

will be continued in section 9.9.

9.5 One Stage Solution of the Noisy JLPC Problem

In this section we develop a formal procedure for the solution

of the noisy JLPC problem that was formulated in section 9.2. We

begin by presenting a proposition which describes the one-stage

solution. The proof of this result is constructive; it is essentially

a formalization of the solution technique applied to examples 9.1 and 9.3.

The one-stage solution can be applied inductively ( backwards in time from

finite terminal time N) to solve (9.1) - (9.16) at each time stage.
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The one-stage solution result is as follows:

Proposition 9.1:

Consider a noisy JLPC problem as in (9.1) - (9.16). If at time

k = 9 + 1 the following three statements are true for each

r j e M, then they are also true at time k =zfor eachr =j M.

(i) Vk(xk,rk=j) consists of mk (j) pieces joined continuously at

{ 5J(1) < 5 ( 2)<,.., <j3(n~) )

< <

S(x r = V k ;t) for 6(t-l) (t)
k k rk= k k k~t' <xk < 6k~t

t =1..m.(j) (9.88)

(here -3 (0 = WD

(ii) Over its domain (6 (t-l), ak(t)), each piece V t)
k k kkk

is twice continuously differentiable in xk, with either

2vJ (xk;t)
-~ >0

or

. 2vJ (xk t)

- < 02 2

( k )  (9.89)

or

.2vJ(x ;t)

=0

throughout 6 (tl) < <
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That is, over each piece Vk(xk,rk=j) is either everywhere

convex or everywhere concave.

(iii) At each joining point 63(t) (t=l,...,mk(j)-l) either
k

Vk ( k=JVk-r) is continuous

~xk

or it decreases discontinuously. 0

This proposition is a generalization of the JLPQ and JLQ one step

solutions (Propositions .l and 8.1). If we think of the x-operating

cost at time k = N as the sum of Q(xN;rN) nd QT(XN;rd (and thus think of

V N(x N,r) = 0), then conditions i) - (iv) are met at k = N. This

proposition can then be applied inductively to solve (9.1) - (9.16)

at each time stage.

Proof of Proposition 9.1:

This proposition is proven in a constructive manner, similar to

the proofs of Proposition 5.1 (JLQ one step solution) and Proposition 8.1

(JLPQ one step solution). We will sketch the proof here; details

appear in appendix ,4.

For each form rk = j e M the minimization in (9.17) is converted

into the comparison of a finite set of constrained in zk+1 sub-

problems, where 2k+l is as defined in (9.50) - (9.53). These are

then solved and compared at each xk to obtain Vk(xrkJ). This is

done via the following steps:
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STEP 1: Obtain a composite partition of xk+l values from the

partitions associated with the x-costs, Q(xk+l,rkl2i),

the form transition probabilities p(ji:xk+I) and the

expected costs-to-go Vk+l(xk+lrk+li) for each i e C.

This xk+l partition

(tt) = (J (Ct-i)1.t.

k+l~t Ik+l 'k+l ~

is obtained as described in section 9.3 (in (9.22) - (9.24)).

This step is the same as for the noiseless JLPQ problems

of chapter 8.

STEP 2: Obtaining Vk+l(x k+lIrkJ).

(I For each X+l interval, A+ ' compute the conditional

expected cost-to-go V k +llrk byh f
+1+ kkl'v Cx ;~t) iec PvsiXkl L (XI:'

k^" k+l=i
ieCj +

k+l k+l'i)

(9.90)

obtaining

Vk+l(x+llrkj) V +l(xk+l;t) for Xk+ 1 e (t)
t=l,. -J

'''k+l-1

(9.91)

Since p(j,i:x ) Vk+l +lk+l and Q(Xk+lrk+l are

each twice continuously differentiable in Xk+l except at

" a finite number of points (for each i e Cj),
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Vk ~ (x lrk J) is also twice continuously differentiable

A'
except at finitely many points. Each piece V) (x ;t) is

k+l k~il

twice continuously differentiable in xk+l over Ak+l (t).

STEP 3: obtaining V k+l (z k+ltr kj) and a partition of z k+l values:

We now have

V k(xlklr Cj) min {uk R(j) + E {Vkl(xk ljr k=j)}} (9.92)

uk

we seek to reformulate (9.92) as

V k(xk~rk~j) =min (V {k (xkjr rk=jtt)f (9.93)

where

Vk~k~ k~lt Vk(x]fr kjlzk+l 6.%1.(t)

mi mm . u R(j) + Vklz~ I ~)

Zk~ e kAl (t) (9.94)

and

Z k+1 =a(rklxk + b (rk)uk - x.,~1- -(rk)Vk (9.95)

Here

V.(zk lrk=j) =E (x 11r
Vk~l +1 k(k+l1xk+lrkj) rk j,

Xk ukJ (9.96)

We claim that the z-conditional cost Vk+l (zk+l Ir kj has a

piecewise structure in z k+l*
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Specifically,

Vk+l (z Ir kj) = V +(z1+l 't) for zk+ e (t)
Vk1k+l k= ~~klkl "+

(t =(9.97)

where the Zk+l intervals in (9.94), (9.97) are

= 4- 'kl
A, A. A.

forming a partition of the real line with

- Y + ( ) < Y +(1 ) <... < y < Y(+ - (l y (J+) 
=

i+1 k+1. k+l k+J. k+l ki-l)

(9.98)

We can express the z-conditional cost in (9.96) as

Vk+l (zk+l Irkj) (v) Vk+l (zk+l + -:(j)vlr k=j)dv

--. (9.99)

Recall from section 9.2 that the noise density p(v) has a

piecewise structure with 0pieces. We can rewrite (9.99) to

reflect this:

a(s)

V k+1(z k+IrkJ) W(v k ;s) V k+(zk+1 + E(j)vlrk=j)dv"
s (s-1)

(9.100)
'N

Incorporating the piecewise-structure of V (X Ir =j)
Vk+l k+1 k

in (9.100) we have
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k+l + 1

k~ ~~k+ k ~ klals

kkl ~lr lV+ k+ l

t=2
min~a(s) Imaxtyk~ (t- 1) z zklO(Sl1)]

*~C a(s) A

+I f W(v;s) k+1 ( k+1 + v.'Ipkl)dv

~.L~.~JILk+l k+l - zk+l'asl]

(9.101)

From (9.101) we see that for each value of zkl the

z-conditional cost is a sum of

integrals. The numerical values of the limits of integration

in (9. 101) depends upon the value of z k+l. This gives

VA (

Vk+1 ( k+lIr kji) a piecewise structure in z k+l

We have a z partition boundary Ay (t), atk+1 ry k+l

each zk~ vlue where one (or more) of the limits

of integration in (9.101) changes.

Since &W(v;s) is twice continuously differentiable in v for

each s over (a(s-l), a(s)) and each V (X ;1) is twice
k+1 k+l'

continuously differentiable (in Xk+l =zk+l + v) over
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(t k+l(t)), it follows from (9.101) that each

A
z-conditional cost piecek+l (z k+l t) is twice continuously

differentiable (with respect to z+) over its domain.
k+l

In order to satisfy (iii) of Proposition 9.1 (i.e.,

(9.89) and for reasons we will discuss later, it is desirable

to have additional grid points in the Zk+l partition:

We also have a Zk+l partition boundary y t), at each

Zk+l value where the quantity

2 vJ+l(zk+l rk=j) 2R(j)

2 + 2 (j) (9.102)
(Zk+I)

changes sign, becomes zero or ceases to be zero and we have

a zk+1 partition boundary at each z k+ value where the

quantity 2Vj+ (Zk+1 rkkJ)

Zk+ 1

changes sign. Consequently

over each z k+ interval +l(t) (J t+i )

the z-conditional cost piece Vi+(zk;t) is
k+.( k-Il; )i twice

continuously differentiable in z and it is everywhere
A

convex or concave over + t) .

STEP 4: Solving the constrained-in-zk+ 1 subproblems:

Having formulated the + constrained-in-z subproblems

k-i- k

we must now solve them. Sustituting the definition of

Zk+l of (9.95) into (9.94), these constrained subproblems

become

646



2z R(j) 2a(j) z R(j)
Zk+ 1  k+lk

b 2(j) b 2(j)

Vk(xklrk-Jlt) - rmin 2 2
Zk-l ~ t) +a Wi x,+i R (j)

k1 k+l b2() -+ Vl ( z k+1t)-"'b2(j)k--k+

(for t=l,...,+l )  (9.103)

We can solve each subproblem analytically, using the basic approach

that was followed in example 9.3.

The endpiece problems (i.e., t=l and t= +) will have two-piece

optimal expected costs:

tVlj (x.kj) if a(j) x4k <33l

Vk (XM'rk ii) = 1,RVk (=,j) if a(j) xk > GJ(l) (9.104)

Vk(xk+,r k-j i+l) = -{-(ifjaLif a(+i) < a(j) xk

(9.105)

. The other subproblems in (9.103) will have either a three-piece

solution structure:

t'L k)-if a(j) xk < eJ(t)

Vi' (xk' k

Vk(xklrk=jlt) if 6J(t) < a(j) < W

Vk  x,j) if 0](t) < a(j) xk

with (9.106)
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or they will have a two-piece solution structure

vk'L(xk'J) if a(j) x < J(t) = 0 (t)V kc ( , rk-j lt  -- e
(, j if a(j) xk > e (t) = 3 (t)

,R " -kk

(9.107)

As in chapters 5 and 8, the superscripts L,R and U correspond, respectively,

to driving Xk+ 1 to the left endpoint, the right-endpoint, or the interior

of the region

(t) (J (t-l),
k+l k+l k+1()

As we indicated in the solution of example 9.3, the actively-constrained

costs VkiL (xkj) and V, (xRk,j) are quadratic in xk . Direct substitution

in (9.103) yields the formulas

la2(j) S~j) 2 2a(j) R(J) y+3 tl)

VtL a (j)jR = 2k+l (t-l))Vk ~ ( J b(j) b2(j)

A2 A1

+ Tk+ 1 (t-1) + A z
^2. tI.

2 R(j) + k+(z k+l;t)

-- k+l yk+l J
(9.108)

for t - 2,...41

and

Sb (j) b (j)

+ Yk+ 1 (t) R(j)

Zk+l = yl +(t) (9.109
i t=l,. . .,~ k+-i
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e t (x i)) in (9.106) are not piecewise-quadratic inThe cost functions V k

xk , in general, as we saw in example 9.3. Recall that we are consider-

ing (9.103) as an optimization over z+i" The inactive-constraint
tU

solution zk+ 1  to (9.103) (if one exists) is a zk+l value in the

xk , in general, as we saw in example 
9.3. The inactive-constraint solution,

Zk+ 1  to Vk(xk,rk jIt) in (9.103) (if one exists) is a Zk+l value in the

interior of (t) that satisfies

aVk(xk,rjt 2 a(j) R(j) x ~ A

kX k=Jlt) 2 R(j) - _2 __)Sx k  3V (z ;t)
0 + k+l k+l

aZk+l b(J) (j)Zk+

with (9.110)

2 2^jaVk(xk,rk=jI t) aV +l(Z k+l;t)
Oz k+I ) 2 b 2 R(j) ( k+l ) 2

(~~z )2 +

Zk+l-ZK+l (9.111)

A

By making each V3 (z k;t) piece either concave or convex over its
k+1 k+l

domain (by adding "extra" points to the Zk+l partition),where necessary,

we have insured that there is, at most, one value of zk+ 1 in the intervalk+ 1
A. tU

.(t) It also insures that the cost function Vi (x,j) is every-

where convex or everywhere concave over ( (t), 0 (t))in (9.106);

this is needed to obtain (iii) of Proposition 9.1 (i.e., (9.89)).

A procedure for solving each of the A+l subproblems in (9.103) is

described in Appendix D4.

The VLtU tRk (xj), V xk) and Vk (xk,J) in (9.104) - (9.107)

possess similar properties at eO(t) and 03(t) to the analogous6k k

quantities in chapters 5 and 8. In particular, we have the following:
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I.I

when (9.105) or (9.106) applies at xk & 0 (t)/a(j) the slopes

tL t'U
and values of Vk (xkJ) and Vk (xk'j) are the same,

when (9.104) or (9.106) applies, at x = 0(t)/a(j) the slopes
k k

and values of V'R(xkj) and Vk'U (xk, j ) are the same,

when (9.107) applies (i.e., there is no V then at

." j .t,R
xk - ek(t)/a(j) - E0k(t)/a(j), the value of Vk (xk, j ) and

t,L
Vk (xk , j ) are the same but

t,L (x'Dt,R

k k k k

a(j) a(j) Xk - a(j) a(j)

(9.112)

STEP 5: Comparing the Constrained Costs:

The fifth step in this proof of Proposition 9.1 is to compare

the solutions of the +i constrained problems specified by (9.103),

as indicated in (9.93). This minimization involves the comparison of

piecewise functions in xk (with structures as given in (9.104) - (9.1079.

Since these function pieces are not all quadratic in x, this comparson

is much more difficult (in general) than for the JLQ and JLPQ problems.

We choose Vk(xkork-j) at each xk value to be the candidate function in

(9.93) having the least value. Thus Vk(x,rJ) has the piecewise
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structure described by (i) of the Proposition. As we mentioned earlier,

we partitioned the axis of zk values so that (ii) of the Proposition

is satisfied by each V k (x,j) (and for each V k L , Vk R ,)

we see from (9.108) - (9.109) that (ii) is satisfied).

3V(x.,r _j)The fact that k is either continuous or decreases

axk

discontinuously follows directly from the comparison in (9.93). A

joining point (.) can arise either from a crossing of candidates (here

the slope decreases discontinuously), or from a change between parts

t,L 'of a subproblem solution Vk(x,rk=J t) (i.e., from vk to k in
_,L t,R in(.0)o rmVtU

(9.105), (9.106), or from Vt'L to v in (9.107), or from to
kk k

VR in (9.104), (9.105); in these cases the slope of Vk(xkIr
coninuu k4isL_
continuous or it decreases discontinuously at 63(M)k

This concludes the proof of the one-stage solution given by

Proposition 9.1.
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9.6 Qualitative Properties of the Optimal JLPC Controller

In this section we examine several qualitative issues related

to the (off-line) determination of the optimal control laws and

costs of Proposition 9.1. The results of this examination are used

in the next section to devise an algorithm for the efficient

computation of the optimal controller.

We begin with a description of the subproblem solution in

(9.94) - (9.97). Some of the properties that are listed in the

following proposition were mentioned in the preceding section.

Proposition 9.2: Consider the constrained subproblem of finding

pk s atisfying

Vk( , rk~jit) =min R(j) + VJ (z ;t)}
Vkx'r~ stuk k+1 k+l

uks.t A.

Zk+l Ak+1 (t

(9.113)

s.t.

Zk+1 = (j) xk + b(j) uk (9.114)

6lt) (k+l k+l

R(j) > 0 a(j) # 0 b(j) # 0

The subproblem solutions possess the following properties:
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1. For t 2,.,,, 'k+l

if a (j) x4k<ek (t) then the minimizing uk in (9.113) is

given by the control law

Yk+l(t-l) - a(j)xk
= t,L (xrk=j) = b(j)(9.115)

with the resulting Zk+l value

Zkl ZLk~l [jk+1 (t-l)] (9.116)
k+l k1 k Yk(.1 r~ 2

and

Vk = Vk (x'rk=j) = () R(j)
A 'A.

+ V3+ (y +l(t-l)]+;t , (9.117)

which is quadratic in X.

2. For t . k+l 1:

if a(j)xk > G3(t) then the minimizing uk in (9.113) is

given by the control law

^j

^= ( k+l(t) - a(j)k= ,R( j = b~j (9.118)

uk uk xk'j)b(j)

with the resulting zk+1 value

,R, -"(x = (t)]- (9.119)
k+1 k+l

and
,(t) - a () 2

V~tR( j) \k+1 (t) JXVk k (k' b(j) R(j)

+ Vi (k+lt ) ] ;) (9.120)

which is quadratic in .• "
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3. For t 2,... "'+1-1

if

v kj ( z k l ; t ) R j < 0

a 2 b2 ()(9.121)
b (j

for all z e (t) then

-k+ k1

Gt-)(+()

3i)A xL- k Ic = II
+~j a j (y t)

v~I ( ~L) 8 R(t) [= ~ vk+Ij ek(

= (~)(9.123)
aej

(t) Jt

2ii AtLkk~t k 4
b ~ j ai)aX)

IIc

Xk~~ ~ ~ aaj x ()(913

a654
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Aj

, S

4. For t = ,. , Ct) if

V+1 k+

- (z ;t)

-"2 + =Rb j ) > 0 ( 9 .1 2 5 )
(z b (j))

Zk+ )

for all zk+ 1  A k+l (t) then.

i)for 63(t) < a(j)xk < E) (t) the minimizing uk in io

!" (9.113) is given by the control law"

=~ 2R(j) Viz (9.126)

:,U.
z k + zj ) .

with "

Zk+l Zk+l )x 2S(j) az

Zk+l k'
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(9.127)
and

2

2 v (z-t)
V V~(zb j k+l

k k zk'j~ 4R(j) a

=t,

+ v+ 1 (z:t)

z z ztIU (x') (9.128)
k+1 l j
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(ii) Here

A. 2 (Z zt)I
= (-1 +b () k+1 l

k k+1 2R(j) z

z = (t-1)] +
ki+1 (9.129)

03W & (t) +y b (j) __1_(__t
k k+1 t 2R(j)

z = Cykl(t) ] (9.130)
k+1

and

E)' (t) (9.131
k k

^j
For t = 1 and t = ,k+l (9.125) is always true (and

j (1 A jjA

k ~ k k)

(iii) For t ,..., + -1:

t,R tUVk (xkJ) k

))J(t) (9.132)

a(j) Xk a(j)

tv R€ J avt 'u (x.Faxk ax
'(t)(t

xk = a(j) Xk = a(j) (9.133)
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(iv) For t = 2,...,

vt,U (k ) tL(k,)

Vk (xki) Vkp xk',j

Ic j(t)Xk k a j) = alj) (9.134)

t~_ t,L

V 3 ct)Vk (xkii)
Dxk axk

E) (t) eIct
kk k (9.135)

-k a(j) Xk a(j) (9.135)

(v) • If

32 + (Zk+l;t) .
k+) k2 - > 0 for all z e A3+(t) (9.136)

(az kl) 2 k+1 k+1

t hen

2 t,U
Vi' (xk , J) > 0 for all 03(t) < a(j)xk <

()2 k

(9.137)

if A-~ vf

-+I ( kl;t)
1 0 for all z e A (t) (9.138)

(az )2I4 c1
k+1

thin
a 2 vtU. jvk c ,j, 0 for all 0 (t) < a(j)x < G9 (t)

(•.:)2 k k k

(9.139)
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*if

2"j

< 0 for all z +l e (t)(~ 2 +1 t( k+1 )
(9.140)

then

I 2 vtU( *,

" < 0 for all e (t) < a(j)xk < 8 (t)
"-:. (3xk)2 k k * (9.141)

For the extreme cases t = I and t + either (9.136) -

(9.137) or (9.138) - (9.139) applies.

This proposition is proved in appendiA D.5. It says that each

subsystem optimal cost Vk(x, rk)jlt) in (9.113) has a two or three

part structure. Note that we have constructed the partition of
A,.

Zk+1 (i.e., the grid points {3 I(t)}) so that for each t. only

one of the conditions (9.121), (9.136), (9.138) or (9.140) applies

over the entire interval __+l(t).
IU

The unconstrained cost Vi (xk,rk=j), which corresponds to
A.

driving z into the leftmost z interval, A+ (1), has the
k-i- k+1 k-i-

two-part structure shown in figure 9.3(a). The actively constrained

piece V 1,R (xk,j) is quadratic in Xk; the unconstrained piece

k
Vk (xj) is, in general, not quadratic in xk. The unconstrained

cost Vk (,j), which corresponds to driving zk+l into the
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rightmost x+i interval, ]+i(' also has a two-piece structure,
*k+l

as shown in figure 9.3(b). The unconstrained extreme pieces

vl'U(xk,rk=J) and Vk k+2(xk,j) each have nonnegative second deriva-

tives over the regions of xk values where they are valid.

For t = 2, 1P -1, if (9.121) holds then Vk(xk,r in

(9.113) has a piecewise-quadratic (in xk) structure with two pieces,

as shown in figure 9.4(a). From (9.124) we see that at their

joining point, the slope of this subproblem optimal cost decreases

discontinuously.
A.

For t = 2,...,+k'+i with (9.125) holding, V (xk,rk=3(t) has

a three piece structure, as shown in figure 9.4(b). The actively

d,L vtRconstrained pieces Vk' L (Xkk ) and k (xkj) are each quadratic

tUin xk . The unconstrained piece Vk (xkj) need not be quadratic.

t'UxJHowever- from (9.137), (9.139), (9.141) we see that VtI(k  )

is either convex or concave over its entire domain of validity

(i.e. for all xk values where Vk(xk,rk=JIt) = Vk (xk,j)). At

the joining points the slope of Vk(xk,r k=jlt) is continuous.

From (9.126) - (9.127) we see that it may be quite difficult

to determine the unconstrained control law u'U(xk,j) . When

V+l (z;t) is quadratic in z there is clearly no difficulty. But

for other Vk+l(z;t) structures, (9.126) - (9.127) must be
tUt'U(k j ) I

simultaneously solved to obtain u'U (xk j) and zk (xkl). it

is this difficulty that motivates the development of a
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Figure 9.3: constrained subproblem solutions for extreme pieces of

the zk+ partition; (a) Vk(xk,r = jli) ; (b) V (xk,rk=J} l ) "
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Figure 9.4: Constrained subproblems and optimal costs for

t =2,.,k+1 1  (a) when (9.121) holds and (b) when

(9.125) holds.
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suboptimal controller described later in this chapter.

We will next show that many of the candidate cost pieces

in (9.104) - (9.107) cannot be optimal from any xk; consequently

they need not be calculated.

The following proposition eliminates many of the candidate

costs in (9.92) from eligibility for the optimal cost.

Proposition 9.3: In performing the minimization in (9.92), the

following candidate costs need not be examined:

(i) if

A
2j
k+l (Zk+lt + 2R(j) > 0

(xk+l) 2 b2 (j)

for all zk+ e A (t)

and

A." .V + (z. .;t+l)k (z t+l + 2R(j) > 0

(zk)2 b2 (j)
k+1

A.

for all z k+l e A +1 (t-l)
A.,

and Vk+l (zk+1 rk=I) is continuous at Yk+l (t) with
Vy+1 - k+ 1~~l kV-j)l k+lt

(z ;t-l) v (Z t)k+l k+l k+l k+ l

ak+l l

k~l +1k~lkk+
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then we need not examine

VkFR (x,) t+1,L

kVk k 9j) V

(ii) if for all z k+l eA 41 (t) we have

~2 vi (zi ;t) + R) < o

O~z b(j) -k+l

then V~i (xk,j) does not exist but we must examine V~ ( j) ad

t,LVi (x',j)'

(iii) if Vk (zk Ir k~)is discontinuous at z - Y~ (t) with

Vk4 .l zk+lrkj) < V~~kl D

A. A.

=fy) (t) k+l'l k+l M +

then we need not examine Vt (xlIL )

(iv) if V k(z Irkj is discontinuous at zk ~ 3 Mtk~l k~lk-j)kkl

with (9.141)reversed, then we need not examine

t,R

Vi ('j).

This proposition is a generalization of Propositions 5.2 and

8.2. It is proved in appendix D.6.
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As we have seen in the examples of this chapter, the optimal

controller hedges to certain values of the artificial variable

Zk+l, The following corollary specifies hecessary conditions

for a point z = z to which the system hedges.

Corollary 9.4:

If the optimal controller in Proposition 9.1 hedges from

(xk,rk=j) to the point Zk+1 = z Lhen one (or more) of the following

is true:

(1) z is a discontinuous point of the conditional cost

Vk+l (zk+llrk j),

Oj Aj

(2) z is a boundary (y +l(t) or y (t-1) of an interval

A+i(t) over which the conditional cost Vk+ 1 (Zk+l rkJ)

has

A
2^.V + (z+ ; t)k V + 2R(j) < 0 (9.142)

(z k+l) 2 b2 (j)

or

(3) z - (t) is a boundary of intervals k(t) and
k+lk

Aj A

k+l (t+l) where Vk+l (zk+ Irk=J) is continuous and

V (Z~t+l) (zt
kav k+l

> 0 (9.143)
'Xk+1  aZ k+l
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Proof: Hedging-to-a-point can occur only to finite boundary points

of the z intervals {A+i (t) : t=1,.. + that is, to an

element of the set{Y+ (t) : t=l,..., jl-1). When the optimal
k+l k+l

controller drives Zk+1 to such a point from some x, then either

vi or _ k is the optimal cost from that xk. Proposition 9.3

excludes many of these constrained candidate costs from elibility.

Corollary 9.4 lists the possible ways that a constrained cost

V '  or V associated with y+(t) can be eligible.

ki k k+l

forollary 9.4(1) occurs when either Proposition 9.3(iii) or 9.3(iv)

A

holds. Here we hedge to the low-cost side of a Vk+l (zk+lIrk=j)

discontinuity. Corollary 9.4(2) occurs when Proposition 9.3(ii)

holds. When (9.142) is true, V 'U is not eligible but both

t,L ab t,R
V a Vk  are eligible (unless excluded by Proposition 9.3(ii)

or iv). Corollary 9.4(3) holds when the slope condition of

Proposition 9.3(i) is not satisfied.

Note that if one or more of the if one or more of the conditions

of Corollary 9.4 is satisfied for some z = y +l(t), we are not

guaranteed that the optimal controller hedges to that z; the

t,R t+l,L
associated constrained costs V 'k and Vk  need not be optimal

in (9.92).

For finite time horizon problems, if xk is negative enough or

positive enough, the optimal strategy will be to keep x in the

same extreme piece of the form transition probabilities p(j,i:x)
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II
and x-costs Q(x,j), QT(xj), for all i 6 Cj; from each j 6 M,

for all future times. The following proposition is a generalization

of the JLQ endpiece result (Proposition 6.1) and the JLPQ endpiece

result (Proposition 8.6).

Proposition 9.5: (JLPC endpieces)

(1) for xk  <6)(1) the optimal control laws and expected costs-

to-go are

l,U ( LeVk (xk'rk=J) =Vk (xI = k (Xk'J)

uk(xk,rk=j) = ,U (xkj) A Lek"k(,i

(2) for xk > 6J(mk(j)-I) the optimal control laws and

expected costs-to-go are

v' (Jkrk+lU ReVk(xk,rk=j) = Vk (xkj) = Vk( j)

+lUA Re(xrk=)= uk (,j) = Ik (xj)

Consequently

(3) 2V e .
(2 (xkj) > 0 for all xk < 6k (1)

2 Re
k > 0 for all x > (

2 -k k ~ 1)(axk)0
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Proof: (1) and (2) above are immediate generalizations of Proposi-

tions 6.1 and 8.6. Item (3) follows directly from Proposition 9.2(v).
C

The following proposition lists a number of general qualitative i
properties of the optimal controller for the noisy JLPC problems of.

this chapter. This proposition is a generalization of Propositions

5.3 and 8.4.

Proposition 9.6: The optimal controller of Proposition 9.1 has the

following properties:

(1) At each time k and in each form jeM, between joining

oints {k(t) :t=l...mk(j) - l} of Vk(xkrk=j)

-b(j) Vk(xk rk=j)
uk (k rk=j) 2a(j) R(j) (9 4

52 U) aVk(xl' rk=j) (9.145)
zk+l(Xk'rk= j) = a(j)xk 2a(j)R(j) xk

(here a(j)R(j) 0 0, b(j) # 0).

(2) At those joining points 6 where the slope of Vk(xkrk=J)
i Vk(xk'rk-j)

does not change e., exists

k=

uK(xkrk-j) and Zk]l(,rkj) are continuous functions of
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(3) At those joining points (t) where the slope of

Vk (,Irk=j) decreases discontinuously

ie, aVk(xk'rk=j) Vk(Xk'rkJ)

Xk=4 xk=

W(i) uk(xk,rk=i) increases discontinuously at S

when b(j) > 0 (and decreases discontinuouslya(j)

at when b(j) )

(ii) the mapping xk - Zk+l (xk,rk=j) increases

discontinuously at when a(j) > 0) (and decreases-

discontinuously at S when a(j) < 0).

(4) The mapping

Zk~l (xk,rkJ

has the following properties:

(i) the mapping is monotonely nondecreasing if

a(j) > 0 (and monotonely nonincreasag if

a(j) < 0) for each jSM

(ii) it consists of mk(j) line segments:
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one line segment with positive slope if

a(j) > 0 (negative slope if a(j) < 0) for

each xk region where an "unconstrained cost"

V ,U (xk,r kl) is optimal

t ,Uk (xk,rk=j) = Vk ',rk=j)

a constant line segment for each xk region

where there is active hedging-to-a-point:

Sk+l k ~

(iii) there are regions of Zk+1 avoidance associated

with (and only with) each xk = value where

the slope of Vk(xk,r k=j) decreases discontinuously.

(5) Each candidate linear control law (associated with the costs

listed in (9.92)) can be optimal over, at most, a single

interval of xk values. 0

The proof of this proposition is presented in appendix D.7.

We have identified some basic qualitative properties of the

JLPC problem that can be used to reduce the combinatories involved

in the "brute-force" solution of the one-stage problem that was

presented in the proof of Proposition 9.1. In the next section

we will develop a solution algorithm that exploits these properties,

enabling us to solve the general JLPC problem (9.1) - (9.16) efficiently.
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9.7 An Algorithm for Obtaining the Optimal JLPC Controller

In this section we develop an algorithm for obtaining the

optimal controller for general JLPC control problems (9.1) - (9.16).

This algorithm is based upon the application of the one-stage

solution of Proposition 9.1 recursively, backwards in time, for

each j4M that the system can take. The basic idea of the noisy JLPC

problem solution algorithm here is the same as in the JLQ solution

algorithm of section 7.2 and the JLPQ algorithm of section 8.5.

For each form jeM at time k, we can compute Vk(xkSrk=j) and

uk(xk,rk=j) one piece at a time, sweeping from left to right

along the axis of a(j)x k values.

The solution algorithm is presented in flowchart form and is

described in detail. In principle it can be applied at successive

time stages to solve any JLPC control problem of the type in

section 9.2. However, since the optimal costs are not piecewise

quadratic in xk , the analytical steps specified by this algorithm

may often be quite difficult to carry out.

An overview of the solution algorithm is shown in figure 9.5.

The algorithm is initialized with the terminal time (k=N) cost

parameter (block 2). Then for successively decreasing time through

k: k (block 13), the one-step solution of Proposition 9.1 iso

obtained for each form jeM (block 9).

In the following discussion we refer to the algorithm flow-

chart shown in figures 9.6 - 9.14. All of the steps indicated in this
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flowchart constitute one iteration of block 9 in figure 9.5.

That is, they determine the one-stage JLPQ solution that is specified

by Proposition 9.1 for some time stage k and form j. For the reader's

convenience, a table of block number locations and entry points is

given in table 9.4.

A macroscopic overview of the algorithm specified by this

flowchart is as follows:

1. The algorithm is first initialized (in block 1) at

time N with the terminal x-cost QT(xj) for each jeM,

2. The determination of the optimal controller at time k

for a fixed j value constitutes one iteration in block 10.

Figure 9.5 differs from figure 8.5 only in blocks 4 and 10.

3. The computations of block 10 begin in block 26 with the

determination of the composite xk+l partition (block 14).

This partition is obtained exactly as for the JLPQ problems

of chapter 8 (figures 8.6 and 9.6 are the same).

4. In figure 9.7 we obtain the tentative zk+l partition

and its associated V+ (zk+l IrkJ, Zk+1 e A(Z)),for

= i,..., as described in appendix D.4.
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Figure Number Block Numbers Entry Points Exit Points

9.5 1-13 start (block 1) Stop (block 12)

9.6 14-26 from block 10 E (block 22)

9.7 27-42 0 (block 27) J (block 33)

9.8 43-61 (block 43) ® (block 61)

9.9 62-84 (block 63) (block 64)

(blocks 77,80)

9.10 85-96 (D (block 85) (block 96)

9.11 97-101 (block 97) ® (block 101)

(block 101)

9.12 102-108 0 (block 102) 3 (blocks 103,104)

(block 108)

9.13 109-118 (block 111) ® (block 118)

(block 109) O (block 116)

Table 9.4: Block Number Locations, Entry Points

and Exit Points for Optimal JLPC
Solution Algorithm Flowchart.
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5. We next add extra Zk+l grid points, as needed, so
ec V (

each Vk+l (Zk+l rk=J) piece satisfies one of the

following for all Zk+ A (t):

2^jS+Ck+I) <

2 - 2Z2b (j)k+l

or
2^- t

2j (z ;t)
-2R(j) k+l k+l <

b 2 (j) k2+l

or

(z ;t)Vk+l k+l > 0
2>0
z k+l

This is done in figure 9.8 via the specifications described in

appendix D.4.

6. The next tasic is to determine which candidate .ost-

to-go functions are eligible for optimality with

respect to Proposition 9.3 and to compute the

parameters for these eligible functions. This is

done in figure 9.9. The steps here are directly

analogous to those of figure 8.7 (applying

Proposition 8.2 in the JLPQ problem).
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7. We next prepare for the rightward sweep along the

a(j)x k axis by obtaining in figure 9.10 the partition

of the real line (of a(j)x k values) that is caused by

thepont 0 (t), G)(t-l) : = .
th pins k k k+l

Figure 9.10 is the same as figure 8.8 (for the JLPQ

problem) except for block 88.

8. Initialization of the rightward sweep is completed in

figure 9.11, where the endpiece result of Proposition 9.5

is applied. Figure 9.11 is essentially the same as

figure 8.9.

9. Finally the algorithm performs the minimization in

(9.93) over each interval of a(j)xk values in the

e - 0 partition, starting on the left. This task,

shown in figures 9.12 - 9.13, is identical to the steps

is figures 8.10 - 8.11 (In the JLPQ problem) and in

figures 7.5 - 7.6 (for the JLQ problem) - except

for blocks 111,112.

As we mentioned previously, it may be quite difficult to carry out

some of the algorithm steps for general JLPC problems. In particular

it may be difficult to do the following:
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(1) Perform the integrations in blocks 30,40,41

32V
(2) Solve for = 0 in figure 9.8z2

Determine V t'U xj) in blocks 84,63 and 77

Determine e](t) and &(t) in blocks 90,91,92

k k

Find the intersections specified in blocks 102 and 103.

These difficulties arise because of the non-quadratic structure of

Vk(xk,rrk- j ) . They will be illustrated in the next section when we

apply this optimal JLPC algorithm to two time stages of an example

problem.
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9.8 Numerical Solution of the Optimal Controller

In the previous section we developed an algorithm flowchart

that describes the steps required to obtain the optimal controller

for JLPC problems specified by (9.1) - (9.16). However, since the

optimal JLPC controller is not piecewise quadratic in xk, in

general, we don't have the nice inductive solution structure of

chapters 5 and 8. At each time stage the steps specified by the

optimal controller algorithm may be difficult or impossible to carry

out analytically. Numerical methods are generally required. These

difficulties motivate the development of suboptimal approximations

to the optimal JLY'C controller that are easie. to obtain and implement.

In this section we will illustrate the optimal JLPC algorithm

of figures 9.5 - 9.13 by applying it to the last two time stages of

the noisy JLPC control problem. That was begun in example 9.2

(section 9.3). This example yields an optimal controller that has

optimal control laws that are not piecewise-linear in xk. We will

use this example to demonstrate some of the qualitative properties

of optimal JLPC controllers that were established in section 9.6.

The determination of the optimal controller at time k - N-2

requires the solution of equations that are difficult or impossible

to obtain analytically. Numerical methods for obtaining the optimal

controller will be described and illustrated for this example.

The difficulties encountered in solving this example at time

k - N-2 motivate the development of a suboptimal approximation to
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the one-stage JLPC controller solution that is analytically tractable

in section 9.9.

We begin by considering the application of the optimal solution

algorithm to example 9.2 at time k = N-i:

Example 9.4: Example 9.2, continued at k = N-I

In section 9.3 we derived the tentative zN partition and the

VN(zNIrNI=I, ZN eA(t)) pieces in (9.47) - (9.48) by following the

steps described in figures 9.5 - 9.7:

7 2
7zN + 7/3 if zN < -1

-l 3 5 2 3 83
V (z NIr 1) - z N + 2 z N TZ if -1 < z N < 3 (9.146)

13 2 13- -- if 3 < z

Following the steps of figure 9.8, we find that inside 1(2) - (-1,3)

we have

D2 VN(ZNIrN-,l ZN eA(2)) 6

2 --- ZN + 5 > 0.az8

Consequently no additional grid points are needed; we have

A1

Y(2) =3

and
AN6(1) 73
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In block 63 we obtain (from (9.126) - (9.128)):

UN1,u -7/ 1 1 x

-1,U 4/11 x_ZN_1  = 4/ N_1

V,U . 7 2 7
Sv -l(xN- 'l") lT X,-1 +

In block 67, at z = () = -1 we have

VN(z;l) <4.0833 7.5833 = (z;2)

so

,(x_,) 2 + 2 + 5.0833
VN- 1 XN 1 4-1+

is an eligible candidate cost, As we have shown above 2,U has a

positive second derivative, hence the answer to the question in block

81 is "yes". Therefore we compute VN ,U XNI,1 in block 84:
-I2 U = X N -I + 9 . 3 3 3 - 8 . 1 X - 5 3 3 3 -

2,U 9.3333 - 83.1111 - 5.3333 XN_1

ZN 1 =
2,U.)

V _ X I = 2 - 18.6667 XN _1  + 192.718

+ -20.7778 + 1.3333xNI]83.1111-5.3333xN

1
Returning to block 67, at z= y = 3 we have

V (z;2) 18.0833 < 33.5833 V(z;3)
NN
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hence from (9.120),

V2-I 2 -6x +2.03

N2,1 (xN- li) x Nl-1 703

is an eligible candidate cost. Proceeding through blocks 68 -~71 -7Z

-~76-. 77 we compute (from (9.126) - (9.128)):

3,U 13 2 +1/
U -l (xN iii) T7 -lXN-i

3,U (x 1) 1

Z 3, (xN 1i) 4 X~

1
The eligible candidate costs-to-go for VN-1(xN1IrNlI)1 are thus

1,1 l, 2 %3 , and %'.Following the steps indicated

in figure 9.10 we obtain the 6-0 grid:

Ni 1 1 -2.75 1- (2) =8.0625

N1 N1

19 (2) =-2.4375 19(3) =12.75
N-I N-1

These values are computed using (9.129) -(9.130). The ordering

specified by block 96 is

N1 N1 N1 N1

Figures 9.11 - 9.13 are then followed to obtain VN ( r a)

according to Proposition 9.3
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Since these steps are almost identical to those in figures 8.9 -8.11,

we will not describe them in detail here. There is one step that is

difficult to carry out in this example. That is the determination of

the intersections of V 2,U (x 1) with V1,R (x 1l) in block 102.
N-i N-i N-i N-i

We obtain the value xl =-813 numerically.

The optimal expected cost-to-go has 5 pieces:

* r l~,U 233ix <- 7
Vl=.636364 Xl+2.333 N-f x75

1, 2+2x +5.08333 if -2.75 'Cx <- 813
N -i N-i+ N-i1 N-i-

V ~ ~ ~ , (21 ~ =X~ 18.6667 xN~ 192.718

+ (1.3333xN~1  20.7778>8S3.1111 - 5.333

if - 313< x < 8.0625
-N-1-

v2R -6x + 27.083 if 8.0625<X <2086
%- N-l N-1 N-

v3,U 2 76 2086
N ,-i .76471 xNl + 4.3333 if x- > 0.6

(9.147)

This optimal cost has a PieCethat is not quadratic in x N- l The

corresponding optimal control law and XNi J- ZN mappings are

as follows:
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lUi =-636364 xN if xN~ -2.75

u ,R -1 if -2.75' < -. 813

2,U +9.3333

U~i xNDr~iin) =-VS3.i1111 5.3333 x

if -.813< xN < 8.0625

2,R -if 8.0625< x < 20.866
'N-1. XN-1 N-

3,U-
uNil --.76471 xN-l if xN-, > 20.866

(9.148)

ZN -, . 363636 xN if xNl < -2.75

iPR . - if -2.75 < <-83
ZN XN-l1

2,U 9.33 - /83.1111 - 5.3333 x
Z N (xNl,r N,=l)= ZN -1l

if -.813 < Nl< 8.0625

= , 3- if 8.0625< x <( 20.866

Z 3, .23529 ,Ni if xi > 20.866

(9.149)

4These optimal quantities are shown in figures 9.14 -9.16. Note that

the siope of VN (xN ,rN-=11) is discontinuous at XN = -. 813, 20.866.

Associated with these discontinuities are the regions of zN avoidance:

(-1, -. 0179827) and (3, 4.90951),
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as specified by Proposition 9.6. Note that the mapping

z (X ,r =1) shown in figure 9.16 is monotonely nondecreasing,
N N-i' N-io
as claimed in Proposition 9.6. 0

Example 9.5: Example 9.2 at k = N-2

Obtaining VN_I(xNIrNl=1) for example 9.2 via the algorithm of

section 9.7 presents no significant difficulties. At time k = N-2,

however, things are much different. Many of the algorithm steps must

be done numerically. In particular, it is difficult or impossible to

tLU
analytically obtain some of the unconstrained candidate costs VN_2

(and their associated control laws), and it is difficult to analytically --

t,U
find the intersections of these VN_2 with other candidate costs.

In this example we demonstrate how the algorithm steps can be followed

without analytically determining the VN'_ functions.
N-2

To obtain VN2(xN2,rN2=) we first follow the steps in

figure 9.6, to obtain the xN_-l conditional cost VNI (xNlrN2 =I)

as follows;
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2
(1. 277 3 )xN_1 + 1.75 if x-1 < -2.75

2
(1.55)xN 1  1.5XN- 1 = 3.8125

SxNl - N-IV if -2.75 <X_ 1 < -. 813

-N-

VN_l(XN_IrN_2=I)- if -. 813 <xN- 1 < 1

m2

(2.65)XN_- 4.6667XN-1 + 48.1795

+[3333xN - 5.19441]V83.1111 - 5.333

if 1 < XN- 1 <8.065

2
2.65x - 1.5xN_ 1 + 6.7706

if 8.065< xN_ 1 < 20.866
2.59x_ + 1.0833 N-I

if 20.8 6 6 < XN-
1

(9.150)

Here

1
= 6 and

1 1
yN-1(1) i-2.75 yN- 1 (4) = 8.065

YN-I (2) --. 813 Y1 (5) = 20.866

y (3) =1
N-i

The computation of Vk(xklrkl=1) via (9.90) (in block 27) can be

done analytically for any JLPC problem dt each time stage, since it

involves only multiplication and addition known functions of xk -
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Next we determine V (z l'for this example. Following
N-i Nl1rN2l

the steps in figure 9.7 with

a(1) - -2 a(2) - 2 3 )

we obtain the tentative ZN 1 grid points (in block 28):

A (1,1) = ( (2,1) = -. 75 - y(4)

A (2,1) - B (3,1) - -4.75 - y(l)

A (1,2) = B (2,2) = 1.187 - y(5)

A (2,2) = B (3,2) = -2.813 - y( 2 )

A (1,3) = B (2,3) = 3 - y(6)

A (2,3) = B (3,3) - -1 = y(3)

A (1,4) = B (2,4) = 10.065 - y(8)

A (2,4) = B (3,4) - 6.065 - y(7)

A (1,5) - B (2,5) - 22.866 - y(l0)

A (2,5) = B (3,5) - 1.866 = y(9)

with , = 11.

The ZN-1 conditional cost VNl(zNlIrN_2=1) is then determined via

blocks 29-33 of figure 9.7. Its 1 - ii pieces are as follows:

1. if ZN_1 < -4.75,

N-i(ZNIrN_21) - (1.2773)z 2 + 3.45307

VNlN1N21 N_ 1
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2. if -4.75< z < -2.813 ,
N-1

3 3
VNI(ZN lir N2=1) (.022724)z + (1.60115)z 2

+ (1.53833)zN_ + 5.88873N-1

3. if -2.813 < z < -1

3 2
V_(zNIr 1) = (.022725)z - (.33635)z + (28.9702)z
VN-). N-). N.-2 N-1 N-1 N-1

+ (153.019)

+ (-(.01875)z N-1 + .254693]I(72-444
5 .333ZN_ 1

.:4. if -1 < z < -.75, NN-1

A 32
VI(z_~rN-"1) - (.114391)Z + (1.38032)z 2_ + (10.6467)z
Nl-i ZN-i 1.-21 ZN-i N-i N-i

-(42.9246)

+ [-(.00 6 2 5)z N-1 + .084898]1 Q 572.44 )

1(5333z 14_1/

5. if -.75 < ZN_1 < 1.187

VNI(ZNlIrN_2-1) - (.0916 6 6 )zN_+ 1.39-1+ 2_ +(1684)z

- (47.9342)

+ [-(.006 25)z N-1 .084898]/(72.444...3

698333z
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6. if 1. 187 < zN1< 3

v(zN =1) (.091666)z 3 + (3.26667)z 2 (3 2 .3 2 35)zi

N- -iNiN-i N-i -

+(251.697)

+ [-(.00 6 2 5)zN~ + .084898] .4

+ ((.01875)z -. 329693] /(93.7778 -5.333z

N-i N-i

7. if 3 < z N-1 < 6.065

A2

V~(zlrN )= (2.65)zi- (4 .6 6 6 6 7)zi + 51.7128

+ -(.00 6 25)z N-1 + .0848981 A72.4444 - 5. 3 3 333z N)1-

+ [+(.0625)z 098981 /(93.7778 5.333

8. if 6.065 < z 10.065

A 2

VN(z,_fr-i-) =(3.04583)z N1- (13.4355)z N1+ 102.159

+((.00625)z - 109898] /(93.7778 -5.33333z

N-i N-i

9. if 10.065 < z < 18.866

A 2

VNi1 (z N- Jr._,1) =(
2.6 5)zNi - (i. )zN-1 + (10.3041)
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10. if 18.866 < z < 22.866

1 3 2
VN_(z NIrN_2 = -(.00 5 )ZN_ 1 + ( 2 . 8 07 5 )ZN_ 1

- (2.23188)zN_1 + 1.6278

11. if 22.866 < ZN_ 1

VN-IN~l l rN _ 2= ) (2 .59 )zN_ + 4.53663

Obtaining the ZN 1 partition for this example, and obtaining the

Zk+1 partition for arbitrary JLPC problems at time k (as in block 28)

does not present any special difficulties. For some problems, however,

it may be difficult to determine the z-cost Vk+l(zk+lIrk=j) as a

function of Zk+l. In example 9.2, finding VNl(zNIrN_2-1) via

figure 9.7 is straightforward since the integrals in blocks 40 and

41 can be done analytically. For arbitrary Vk+l (z+llrk=j), if

these integrations cannot be done analytically then numerical methods

of integration must be used.
A A

Comparing VNI(ZNlIrN_2=1) with VN(ZNlrN_=) in (9.146),

we see that the z-conditional cost is much more complicated at

stage N-2. Following the steps of figure 9.8, we find that no

additional zN 1 grid points are needed. Thus the complete ZN 1

partition is

1this can be done by numerical methods (substitution of values and
testing) or analytically in this example. For some examples only
numerical methods are feasible.

4
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-"* - . - •- ... , - . , - - - . . . . . . , . - . :

kAl

1

YN-1 (1) - -4.75 (7) =6.065
N-1 (8) - 1.065

1 ^1
YN-1 (2) - -2.813 YAN-i (8) 10.065

1 ^1(3) -y (9) m 18.866

1
YN-1i(4) =-.75 Y N-1i( 10 ) 22.866

1
YN-1 (5) = 1.187

1
YN-1 (6) = 3

with -1(1) 11. The second derivative of VN_ (z N - l r N -2=1) is

everywhere positive in this example. That is

2A
22 VI- (zN-I;t) A lA

V-N- t > 0 for z e & (t) -(yl (t-1), Y1 (t)),
a2 N-i N-i N-i N-i1ZN- 1

Next we follow figure 9.9 to determine which candidate costs

are eligible in terms of Proposition 9.3. The tests in figure 9.9

can be done without actually computing any of the candidate costs.

Only the values of

AV + (z t)

VJta k+ k+1

Zk+l

at the grid points {YJ+l(t) t - 1,.. are needed in

blocks 67,70 and 74.
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For this example, the values of V N_1(z N Ir N-1 ) and its

derivative at the zNl grid points are listed in table 9.5. Note

that V N_I (ZN lIrNI=) is continuous in ZNl.

Using these values in figure 9.9, the list of eligible

candidate costs for VN_2(N 2 ,rN2Il) is found to be

VNU (xN 2 rN_2=) for t 1,...,1l

and

.7, L
V6 ,R (x r 1) = V (x ,r =1)

N-2 N-2 rN-2 N-2 N-2 N-2

The next task is to obtain the9 -0 grid, as in figure 9.10.

For this example

2 AlV 2 ^ (ZN-1;t) 2 R(j)-i - + > 0
@z 2 b 2 (j)

for each t = i,...,liWe compute {eJ(t) I J(t-l) t = i,...,ii}
k k

directly in block 92 from (9.129) - (9.130), using the values

in table 9.51
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. - " . " "v ; " . . . - " L' . " 
'
- ". " "' L " -. . . . . . . . . . . . . .. " -

z (z r 1 (z r -1)

N-1 VN- N-1 N-2m N- N-i N-2

-ZN-

-4.75 32.272 -12.134

-4.7 32.272 -12.134

-2.813 13.725 -6.930

-2.813+  13.725 -6.930

-1 5.216 -2.4425 discontinuity

-1 5.216 -2.4886

-.75 4.695 -1.6741

-.75+  4.695 -1.6741

1.187 8.33 5.7516

1.187+  8.33 5.7516

3 27.09 15.2791 1discontinuity
3+ 27.09 15.3251

6.065 98.16 31.034

6.065+  98.16 31.034

10.065 263.66 51.845

10.065+  263.66 51.845

18.866 905.62 98.4898

4] discontinuity18.866+  905.62 98.3524J

22.866 1358.73 118.4459

22.866 1358.73 118.4459

Table 9.5 Values of zN - conditional Cost and its

Derivative to the Left and Right of each grid
A 

^1point {y N-1 (t) :t N- m 1N-.
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1 1

"0_ (1) -- 10.817 - (2)N-2 N-2

11
1 (2) = -6.278 - (3)
N-2

E)_2 (3) =-2.221

N-2 (4) - -2.244

.''1 1
E)_ 2 (4)= -1.587 = e (
N-2 N-2

1 1(5)2 - 4.0628 e (6)
N-2 N-2

10N 2 (6) = 10.6395

1 (7) = 10.6625
N- 2

1 1_ (7) =21.582 = (8)N-2 N-2

1 1E) (8) = 35.987 = 02(9)

0N 2 (9) - 68.111

"N2(10) - 68.042

1 1
"N-2 (10) = 82.089 = N2 (11)

Now we follow the steps outlined in figures 9.11 - 9.13 to

We can finddetermine V (x ,r for each value.VN-2(xN-2'rN-2=1 )o ec xN vaue
all of the boundaries of unconstrained cost domains of validity and

most of the intersections between candidate costs without explicitly
tU

J-alytically determining all of the VN_2(XN 2 ,1) functions To do this
we need to find the constrained cost functions ttLv aN

fort N-2 anV-2_ for t - 1,... ,70.
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From (9.117), (9.120) of Proposition 9.2 and table 9.5 we have

1,R - 2,L - 2
VN-2  %- N -2 + 9.5xN- + 54.8346

- v~'~ 2 + 5.626zN 2  +2.3
V -2 %-2 XN-2 N2+2.3

3,R - 4 ,L -2 2+6.19
%-2 N -2 -XN- 2  +N-259

4, v5,L 2 +.x+627
%-2 - N-2 - N-2 +15627

5,~R 6.L -2
%-2 N-2 XCN-2 -2.374xN- + 9.7420 (9.151)

6,R 7,L 2 -6x + 36.09
N-2 N-2 = xN-2 XN-2

7,R 2 12.13x +3134.88
%- N-2 xN-2 XN-2

8,R - 9 ,L =2 20.13 XN + 364.9
VN-2 %-2 XN-2 X-

v9 ,R = 10,L -x 2  -3732 1540
%-2 %-2 xN2 377 2 1240

10,R 11,L 2
N -2 N-2 = 'N-2 -45-732xN- + 1881.58

Using these easily obtained constrained cost functions we can

avoid having to.analytically determine the unconstrained cost

functions ,as we will demonstrate below in detail.1

* . Now we consider in turn each N2 interval in the 8

* partition specified by (9.150).

For xN-2 sufficiently negative, we know that

V' ((x1

Since VN zis quadratic in zNV (x2l is quadratic

in xN-2

1these details are expounded in the next five pages.
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4- 7".

In the interval (-", -10.817 = G1_.(1)), the only two valid

l,U 6,U 7,L
eligible candidate cost functions are V and V V

VN-2 N-2 - N-2

From (9.151) and Proposition 9.2 we have

6,R 7,L 217.995 at x 10.817
vN-2 VN-2 N-2

I,U 1 ,R=-0.1VN_2 = VN_2 - 69.081 at xN_ 2  10.817

Consequently (from Proposition 9.6(5)),

I,UVN 2(XN 2 rN 2 =l) = VN_(xN_,l) for XN_ <-10.817

In -10.817 < x < -6.278, VN 2 ceases to be valid. The

2,U 6,R 7,L
valid eligible costs are VN_ 2 and VN_2 = VN_2 . Using (9.151)

and (9.132), (9.134) of Proposition 9.2:.

at X N2= i 2(2) = -10.817

V2,U _2,L
= V-2 = 69.081

• at = _(2) = 6.278
xN-2 E)-2

v2,U _2,R2S 7 1 5
V-2 VN- - 25.731256

and
v6,R 7,L 113.17128
N-2 VN-2

Consequently VN 2 (xN 2 ,rN 2 1) = 2,U(N_1) over (-10.817, -6.278).

In the interval -6.278 < < -2.244) 2,U ceases to be valid.
xN 2 < VN_ 2
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_3,U 6,R v7,L
The valid eligible costs are V and V N-2 At

'N 2 = (3) =-6.278,

3,U 3,LV = VN_ = 25.732,
N-2

3,u
so V is optimal there. But what is the numerical value of: so N-2

I 3,U1

at xN 2 = -2.244 = 0N2(4) ? From Proposition 9.2 we know that

~V (z 3)
3 , ) = 1 N-l ZN-i ;

UN_ 2 N-2 - N1

3,U 3,U
ZN-1 = N-1 ' N-2 N-2

(9.152)

from

3,U 3,U (9.153)
N-2  N- 1 - %- 2

with resulting cost

3,U ,l) 3,U 2 +1

vN-2 N-2 = '1N-2 + VN-l(ZN-1; 3 ) (9.154)

3,U
ZN- 1  N-1

where

z3,U ( (2), N_(3)) = (-l,-2.813)

3,U
Using (9.152) - (9.154) we need to find VN_2(xN_2,) for XN- 2 near

6,R -7,L
-2.244 and compare it with the value of VN 2  VN 2 at that xN 2 '
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6, R 7,LisotmlfrayN_
in order to determine if V 2 is optimal for any

3, U
in (-6.278, -2.244). We find that to obtain ZN 1  = -1, the

control is

-" 3,UUN2  = +1 2213

applied to

XN_2 = -2.22

with resulting cost

= 6.7074.
N -l

Since

6,R 7,L = 54.34 at
VN-2 - VN-2

x = -2.22, it is clear that V3,U is optimal over the entire
'N-2 ' N- 2

interval (-6.278, -2.244).

Next we consider the interval eN_2 (4) = -2.244 < < -2.221

1 3,U
= 1_(3). Here V is the prevailing optimal at N2 -2.244
";-2 14-2 ''-

4,U 6,R 7,L
and the costs V 4,2 and VN_ 2 . V7, 2  are valid, eligible candidates

for optimality. At N -2.221 = GN2(3),

3,U 3,R 4,L
V- 2  V-2 -2 - = 6.7067

%-2 V -2 -2

4,U 4,L 1 3,U
and since VN_ 2  < for all x (4),we know that V4 2VN'2 V -2N-2 N-2N-

will cross V42 somewhere inside (-2.244, -2.221). We will

* call this point of intersection 6,_13). we will defer its

determination until later in this discussion.
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6,R = V7,L = 54.36 atX = -2.221
VN-2 VN-2 'N-2

we have that

3N U for -2.244 < x < 1_(3)

VN-2(XN-2Il) = 4,U for <2

VN 2  N-2(3) < xN- 2 < -2.221

where -2.244 < 1_2(3) < -2.221.

In the interval (-2.221, -1.587) the only eligible valid
4,U 6,R 7,L=1.8

candidate costs are V 2  and VN_2 = VN_2 . Since at x 1.587
VN-22N2 N-2

we have

6,R 7 ,L 48.1306
vN-2 - N-2

4,U 4,L 6.3954VN-2 VN-2'
.--

4,Uwe see that VN-2 is optimal over the entire interval (-2.221, -1.587).

5,U
In (-1.587, 4.0628) the eligible valid candidates are N2and

6,R 7,L
vEER= v~L. NowVN-2 VN-2

1 1
at xN-2 = -1.587 - eN-2 (5) - N-2 (4 )

v5,U _5,L 6.9
at in~~6.395 = N.()
N-2 -V1-2

•at XN_ 4.0628 =) N_ (5) = 2(6)

5,U 5,RvN_2= vN2  =16.6033
VN.2 - vN 2  28.2195
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5, U
Therefore V is optimal over (-1.587, 4.0628).

N-2

Over the next interval (4.0628, 10.639), the eligible valid

candidates are 6,U and 6,R 7,L . Since 6,U <6,R except
VN-2  VN_2  VN VN-2  VN_2

at E)_1 (6),

6,U for 4.0628 < < 10.639.
VN-2 (XN-2 ,rN-2--) fVNr2  4

Over (10.639, 10.662) the only eligible valid candidate is

6,R 7,LN-2 N-2 , so it is optimal. Over (10.662, 21.582) the only

7,U
eligible valid candidate is VN 2, so it is optimal. Similarly,

8,U is optimal over (21.582, 35.987) and 9N_ is optimal over
VN-2 VN- 2

(35.987, 68.042).

Now in the interval (68.042 = 1-2(10), (9) = 68.111) the

cot ~hcton -9,U _I0,UJ
cost functions 9_2 and VN_2  are both valid eligible candidates.

At xN_2  68.042, _9,U is optimal. At x _ 68.111 @1 (9)
N-2 N -2 N-2 N-2

,U 9 10,L 10,U

10,S timal here. In (68.042,68.111) we have the inter-
so %- 2  is optia ee- 9,U 10, U

section of VN_2  and VN_2  which we will denote by N2 (10).

v9,U for 68.042 < < 1 (10)%N-2 " N-2 N-2

VN-2 (xN-2rN-2=I)  10,U I1%N_2  for 6N_2(10) < xN- 2 < 68.111

In (68.111, 82.089), U is the only valid eligible candidate
N -2In (68111, 2.089, VN_

so it is optimal. Similarly, VN-2 is optimal for xN > 82.089.
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We have now determined the basic structure of the optimal

controller, using the procedure of figures 9.11 - 9.13. This has

been done without explicitly computing the costs V_(xN2rN_1)
N4-2 N-421rN- 2

Instead, we used the quadratic, constrained costs in (1.151), as

specified by Proposition 9.2

Summarizing the preceding discussion, we have found that

vlU for 1
N-2 xN-2 < -10.817 6 (1)
2,U 1

N-2 for -0817x = 6N-2(2)

3,U for -6.276 < x < (3)V%-2 - N-2 - N- 2

1,U 1VN_ 2  for 6N_(3)z <X_ 2 <-1.587 = N_(4)

v5,U for -1.587 < < 4.0628 =1 (5)

%4-2 - 4-2 6N-2(5)

6,U 1
%- 2  for 4.0628 < xN 2 _ 10.639 = 6N2 (6)

6,R 7,L 10.631< < 10.662 - 1 (7)
VN (XN_ 2 ,rN_4 2 1)- - -2 for 3 XN 2  N -2
14-(-2 N-224-

7,U 1-7,U for 10.662 < x < 21.582 -
VN-2 - N4-2 42 (8)

8,U 1
v -2 for 21.582 < XN-2 < 35.987 =6 N-2(9)

9U for 35.987 <X 2  62(10)

10vU for 11 (10)< x14 < 82.089 = 1 (11)N -2 N-2 ( 1 ) - XN-2 - 8.9 N_2()

for 82.089 <
V%-2 N-2 (9.155)
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where we have yet to determine the two joining points which lie in

the intervals

-2.244 < 51 (3) < -2.221
N-2

68.042 < _2(10)< 68.111

Some of the unconstrained costs in (9.155) and their correspond-

ing control laws can be easily obtained analytically. In particular

the optimal controller endpieces are

lU 2
N-2( N-2 1 ) (.56088) xN-2 + 3.45307

l,U
UN_2(XN_2,1) =-(.56088) XN2

N-2 '-2'"- (.72145) ,-2 + 4.5366

uN_2 xN_2 ,1) -- (.72144)

t,U
However, the other unconstrained cost pieces VN_ (t-2,...,10) areN -2

harder to obtain. In particular, in order to analytically solve for

7,U 7,U
N-2 andVN-2  (as functions of xN-2), we must solve a sixth degree

polynomial in u which must in general be done numerically.

However, we can numerically obtain the value of the optimal

control and expected cost-to-go for any XN_2 . Therefore we can

determine the optimal controller for as fine a mesh of xN_2 values

as desired.

The procedure for doing this is as follows:
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1. For intervals of X.k values where a constrained cost

kvI~kj or vR(xk,j)) is optimal we obtain

uk(xk,j) and Vk(xk,j) directly from (1) - (2) of

Proposition 9.2.

2. For intervals where an unconstrained cost V U(xk j) is

optimal we obtain uk~(xk~, j) and Vkxj) tUa

follows: (~)=a

i)for arbitrarily chosen z k l values in the constraint region

icM) fin d uk from (9.126):

av (Z;t)-b j k+l
'1k 2R(j) 3

Zk+l

Since we have C z ;t), we can differentiatek +l k+I

(numerically or analytically) to obtain the above

quantity,

(ii) we then find the X. value that corresponds to

tUobtaining zk~ (xkj) -z with this U

xk -z Uk

(iii) We can then obtain the corresponding value

of v ' k~j from (9.128):

t 2 3
Uk +Vk~(z~t)

for this z and u.k value.
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We repeat this procedure for as many X values as needed.

We can use this procedure with each candidate cost in block 102

(of figure 9.12) to determine the intersections of candidate costs.

Applying this procedure to example 9.2 we obtain the optimal control,

expected cost-to-go and resulting ZN value for a number of

XN-2 values, as shown in tables 9.6 - 9.7. The joining points

resulting from crossing candidate cost are found to be approximately

1
6 N-1 (3) z - 2.233

6_ (10) 68.10

N-2

From tables 9.6, 9.7 we see that the optimal control law

U-2 (xN-2' rN-2l) is discontinuous at

1
XN2 6 (3)Z -2.233xN2mN-2

XN_2 1 6 (1) Z 68.10
xN2'N-2

Associated with each control law discontinuity is a region of

ZN- 1 avoidance:

(-1.005, -.996) and (18.863, 18.882)

We also note that VN_2(xN_2 rN-2=1) has its minimum value near

XN-2 - -.2204. Evaluating VN_2 (XN_2 rN_ 2=1) for XN_2 near -.2204,

we find that the minimizing x- 2 is

xN 2  -. 26

with
UN2 - -.003 and V - 4.28517.

2N-2
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'N 2  'N-2 N-2  N-2 (N 2 IN 2 l

7'-20 11.2167 -8.7833 227.806

-12 6.7300 -5.2694 84.213

-10.817 ( N2 1 ) 6.0665 -4.75 69.075

-10 5.7938 -3.933 60.032

- 8 4.4650 -3.535 36.004

- 7 3.8861 -3.1139 31.040

-6.278 &4(2) 3.4651 -2.813 25.732

-5.581 3.0809 -2.5 21.168

-3.344 1.8443 -1.5 10.151

- 2.243 1.2337 -1.010 6.763

- 2.233 ~ (23 ) 1.2275 -1.005 6.73

+ 1 +
-2.233k (3) 1.2379 -. 996 6.73

6;-2

-2.114 1.1644 -.95 6.482

-1.984 1.0838 -.90 6.158

* 1
-1.587 -6 (4) .8371 -.75 5.3956;-2

-.9117 .4117 -.5 4.551

-.2204 -.0296 -.25 4.287

-.0802 -.1198 -.2 4.308

.2021 -.3021 -.1 4.427

.4869 -.486q 0 4.651

r1.2102 -. 9602 .25 5.697

1.9493 -1.449 .5 7.478

Table 9.6: Optimal Controller at Time k=N-2 for
Example 9.2 (Part I)
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'N-2 UN- 2  ZN- 2  VN- 2 (xN 2 ,rN2 =l)

3.4756 - 2.476 1 13.463

4.0628 - 61_(5) - 2.876 1.187 16.605

4.2743 - 3.024 1.25 17.849

6.8866 - 4.887 2 38.491

1
10.639 - 6_(6) - 7.639 3 85.44

N-2

110.662 - (7) - 7.662 3 85.79

. 14.229 -10.229 4 149.62

17.792 -12.792 5 231.64

21.351 -15.351 6 331.79

21.582 51 (8) -15.517 6.065 338.93
N-2

24.916 -17.916 7 450.29

28.504 -20.50 8 588.12

135.987 =-6 (9) -25.92 10.065 935.52
N-2

40 -28.84 11.164 1155.4

50 -36.10 13.904 1804.7

68.042 -49.19 18.847 3343.5

68.10 (10) -49.24 18.863 3349.2

68.10 +  -49.22 18.882 3349.2
68.111 -49.23 18.885 3350.3

70 -50.58 19.422 3538.8

75 -54.15 20.849 4062.5
1

82.089 6 (11) -59.20 22.886 4866.1
N-2

90 -64.93 25.07 5848.3

100 -72.14 27.86 7219.0

Table Optimal Controller at time k-N-2 for Example 9.2

(Part II)
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It is important to note that we can obtain the optimal

controller for any JLPC problem of this chapter in the manner

demonstrated for example 9.2. However, a large number of numerical

calculations may be necessary in order to accurately approximate the

optimal controller, and the resulting controller may not be easy

to implement. In the next section we will consider a suboptimal

aproximation of the JLPC controller.
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9.9 Suboptimal Approximations of the Optimal Controller

The algorithm for determining the optimal controller of sec-

tion 9.7 and illustrated in section 9.8 allows us to obtain (or to numer-

ically approximate arbitrarily well) the optimal controller for any noisy

JLPC problem. However, this controller may have certain undesirable pro-

perties. Specifically,

* it may be too difficult (i.e., require too many calculations) to per-

form all of the analytical and/or numerical tasks required to derive

the optimal controller

the resulting controller may be too complicated for cost-effective

implementation.

Consider the example described in the previous section at time stage

k=N-2. If we need to obtain the optimal control law for a fine mesh of

x. values then the number of calculations may be prohibitive. Imple-

mentation of the optimal controller for x intervals where the optimal
N-2

control law is not analytically available will require a "table look-up"

operation (and interpolation for x values between table entries) in

order to determine the control input to be applied for any encountered

x_ 2* These implementation tasks may be too expensive or too time con-

suming to be economically feasible.

These difficulties motivate the development of a suboptimal approxi-

mation of the optimal controller that is easier to determine an.d implement.

In this section we will consider a suboptimal approximation of the

optimal controller that drives the system to one of a set of arb-

itrarily chosen z values.The basic idea is as follows:

0 at each time stage k we designate a set of z k+ values that the con-

troller may hedge to from (xk,rk=j). The cost of hedging from any

71k



to a specified is quadratic in x These quadratic costs

are compared for each xk and the control law corresponding to the

lowest one is chosen.

This approximation method yields a controller that has control laws that

are piecewise-linear in k, and piecewise-quadratic expected costs-to-go.

This is essentially a brute force approximation of the optimal controller.

In principle, if we choose enough target Zk+1 values at each time k, we

can obtain arbitrarily good approximations. An open question is how to

intelligently choose these target values. One reasonable set of target

choices are the discontinuous points of the z-conditional cost

Vk+l (zk+llrk =j), since we know that the optimal controller may hedge

to such points. In the example below we have chosen these points and a

grid of values in between. The performance of the suboptimal controller

is unsatisfactory after two time stages. At least for special classes

of JLPC problems, it should be possible to use knowledge of the struc-

ture of the problem to obtain a better approximation of the optimal

controller. We have not addressed the topic of approximation of the

optimal JLPC controller in detail here.

This approximation of the optimal JLPC controller consists of the

tasks specified in the flowcharts of figures 9.5-9.7 and 9.17, which can

be summarized as follows:

1. The overall algorithm framework is described by figure 9.5, as in

the optimal algorithm.

2. The xk+l-conditional cost and Xk+ 1 grid are obtained in figure

9.6 and block 27 of figure 9.7 as in the optimal algorithm except

that the approximate Vk+l(xk+,rk+ll=i) (obtained in the oreceed-

ing iteration) is used instead of the true optimal cost.
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3. The ck+londitiona1 cost Vk+l(Zk+llrk=j) is computed via figure 1
9.7, exactly as in the optimal algorithm (except that the

Vk+l(Xk+l r =j) from step 2 is used instead of the true one. n
k

4. We then follow the steps of figure 9.17 (replacing figures 9.8-

9.13) of the optimal controller derivation algorithm.

In table 9.8 we list the block numbers of the flowchart for this

approximation scheme. The circled numbers in the table refer to

points where the flowchart control path enters and leaves the

different figures.

Figure Number Block Numbers Entry Points Exit Points

9.5 1-13 start (block 1) stop (block 12)
9.6 14-26 om block 10 (block 22)
9.7 27-42 (block 27) (block 33)
9.17 43-59 (block 43) block 59!9

Table 9.8: Block number locations, entry points and exit points for sub-

optimal approximate controller derivation.
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C1,10011 Will V ALUES AND SET p,":rn
got 4)

YES NO

44

L(I,,j) awlC) R4S J - W042 )

ai Q ; j ) = O t) G C I j ) s v( N 3 )

AS IN AS IN

CANOOA~T COUN'TUI

(M)= oi (0 a ni A rClavx GU) -G(fti

477 54

l:=mInIffizini I int mnprni4ini Ir

block47 N4black 54

L. Ldmjj is Lnnj W

NO m:mIns.~ NO

so END OF TIM& K, FOR

Figure 9.17: Calculating and Comparing Candidate Costs in the

Suboptimal Approximation of the JLPC optimal Controller.
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. Let us now consider the suboptimal approximation method in detail.

At each time stage k and in each form je M we begin by calculating the

Scost V(z+ rk j) via the steps specified in figure 9.7.
'k~l cost 'k+k

This Vk+l (zk+ 1 rx=j) is based upon the approximate expected cost-to-go

Vk+l(x+lrkj) (computed in the preceeding iteration),

In the process of determining V (z +ltrk=j) in figure 9.7 we also

]+1 k1k

obtain the partition grid-points (i),...., y(L) I. Note that for this

suboptimal controller we do not need to differentiate Vk+l(k+llrk=J), nor

do we have to add the extra zk+l partition grid points that are used in

the optimal controller derivation (in figure 9.8).

As we indicated above, the basic approximation idea is to calculate

and compare the costs associated with hedging to each member of a set of

specified zk+l values. included in this list grid points (ob-

*..[': tained in figure 9.7) where Vk+l(z+ Irk=j) is discontinuous. Let N(zk+I)

denote the number of these target Z+i values; that is, we designate a

2
list of values {zk+ 1 

= z(i): i = 1,...,N(z k+)}

that the system is rquired (by our suboptimal approximation) to

hedge to. This list of target points includes the discontinuous

points of the z-conditional cost (where we know that the true opt-

imal controller may hedge to) and we have chosen additional target

points in between. (hopefully enough for a good approximation). For

each of these target points z(i), the control law

u(i) = -L(i) xk + F(i) (9.156)

1The symbol ' is used to denote approximations in this section.
2ordered from left to right; i.e., z
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drives the system to zk+ = z(i) from any (xk ,r =j) with the

resulting quadratic cost

2
V(i) - K(i)x + H(i)x + G(i) (9.157)

k k

where the coefficients in (9.157) are

L(i) = a(j)/b(j) (9.158)

F(i) = z(i)/b(j) (9.159)

2 2
K(i) - a (j) R(j)/b (j) (9.160)

2
H(i) =-2a(j)R(j)z(i)/b (i) (9.161)

G(i) z 2(i)R(j)/b2(j) + V (z(i) rk=j) (9.162)
k+lk

Note that the index i in (9.156)-(9.162) refers to the target point

z(i). The parameters F(i), H(i) and G(i) here depend upon z(i).

Note that G(i) (and hence V(i)) is not quadratic in z; however

V(i) is quadratic in x. This is the motivation for this approx-

imation scheme; we are obtaining a quadratic controller structure

by evaluating Vk+l(z(i) rk=j) only at specific points.

For each xk value we choose u k(x k,r k=j) to be the control law in

(9.156) that yields the least expected cost in (9.157). To do this we

must find the intersections of the costs V(i):i=l,...,N(z
k+l

in (9.157). That is, we obtain the approximate controller expected

cost Vk (xk, rk=j) via the minimization

SVk(xk, rk=j) = min V(i)

i=1,...,N(z I) (9.163)
k+ 1

at each xk value. Consequently the approximate controller cost

V (x ,r =j) is piecewise-quadratic in xk . Consider now the minimization
k kk= k*

723
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in (9.163). From (9.157), V(i) intersects V(j) at

G(j) - G(i)
xk = (9.164)

H(i)-H(j) (

Therefore we can solve (9.163) for all xk by determining the intersections

of the V(i) using (9.164). Following the basic idea of the controller

algorithms of chapters 7-9, we need not solve for all of these inter-

sections. For xk sufficiently negative, the lowest cost ir.

I V(i) : i = l,...,N(z )I will be V(l) (that is, the leftmost target
k+ 1

value is hedged to), when a(j)>O (or the rightmost when a(j)j<0).

We then sweep rightward along the axis of a(j)xk values. At some

value one of the other V(j) costs in (9.157) will intersect V(1) and

will then become the prevailing optimal cost until it in turn is

intersected by another cost. Since the mapping

xk 1 Zk+1

is monotone nondecreasing for a(j)> o we need only consider the

intersections of the prevailing cost V(n) with V(n+l),...,V(N(z k+)).

This suboptimal controller will consist of a K.3) pieces (at time k from

form j), where *r.Cj) increases at most linearly with the number of tar-

get zk+l values, N(zk+ I

The computational and implementation advantages of this suboptimal

controller, relative to the optimal JLPC controller derivation algorithm,

are as follows: for the approximate controller

1. We need not compute the functions

V 1k+l +1 irk=J )  24

Vk+l (zk+1 
) 

"I

azz
ak+1

(aZ k+l )
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2. We need not determine (analytically or numerically) any of the

V 'u  costs, nor do we have to determine a e-e grid as in
k

figure 9.10.

3. The candidate cost functions are all quadratic in so it is

easy to-determine their intersections.

4. The suboptimal control law is piecewise-linear, unlike the opti-

mal controller thus the suboptimal controller will often be

easier to implement.

5. The suboptimal controller has the same type of structure (i.e.,

piecewise-linear control laws) at each time stage, unlike the

(in general) changing structure of the optimal controller. This

also facilitates implementation of the suboptimal controller.

6. The suboptimal. controller specifies a control input for every xk.

The numerical implementation of the optimal JLPC controller (as

in the previous section) requires interpolation between stored

values.

To illustrate this suboptimal controller we apply it

to two time stages (example 9.2) and compare the resulting controller wit'

the optimal controllers obtained in section 9.8.

Example 9.5: (Applying Suboptimal Approximation to Example 9.2)

In the previous section we found that at time k=N-i the optimal JLPC

controller for example 9.2 has five pieces. One of these pieces involves

a control law that is nonlinear in Xn_1 . Let us now consider the subop-

timal approximation of this controller that is specified by figures 9.5-

9.7, 9.17. In section 9.3 we obtained (9.146):

..
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7 2 7 ifz -

SN N 3 N

-l 3 5 2 3 83

VN(NN-= 18 ZN 2 N 2'N +24 N

13 2 13 if3<
-7. + 3 N

This z -conditional cost was obtained via the steps of figures 9.5 - 9.7.

n

In order to apply the approximation technique of figure 9.17 we must

choose a set of N(z N ) target values of zN to which the suboptimal

controller is constrained to hedge. In table 9.9 we list a set of

N(zN ) = 34 such values. Note that we have included the values of

zN where VN(ZN r N1=1) is discontinuous (ie, -1 , -1 , 3 and 3 ).

The remaining points have been chosen arbitrarily.

Following the instructions of figure 9.17 we obtain the following

approximation of the optimal JLPC controller for example 9.2 at time

k=N-i:

'-- Nl(xNl~rN-ll) = XN-l + HN l(t:l)xN-l + GNl(t:l) (9.165)

0u (x r -) = -x + F (t:l) (9.166)
N-1 N-1N-1 XN-1 N-i

Z (x ,r =1) = F (t:l) (9.167)

N-I N-I N-I N-I

for (t-l) XN_ 1  N-1 (t)

N-1 -

N-

where the parameters in (9.165)-(9.167) are as defined 
in (9.157)-(9.162)

and the (" - (t)}are determined in blocks 47 or 54 of figure 
9.17.

In table 9.10 we list the parameters for this example when the zN

grid of table 9.9 is used. Here'N1 (1) = 25. That is, the approximate

controller has 25 pieces at time k = N-i.
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1 -6 18 .75

2 -3 19 1

3 -2.75 20 1.25

4 -2.5 21 1.5

5 -2.25 22 1.75

6 -2 ~ 23 2

7 -1.75 24 2.25

8 -1.5 25 2.5

9 -1.25 26 2.75

10 -1-=M 27 3-CZ

11 -1 ~28 3~

*12 -7.5 29 3.25

13 - .5 30 3.5

14 - .25 31 3.75

15 0 32 4

16 .25 33 5

17 .5 34 10

Table 9.9: The N(z N 34 target z N values at time k =N-1 in

example 9.5.
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VN 2 .r'2 NLI ( ) ii. )  
choAce of

30 782.43 -15 - 43.23 1

2 20 350.17 -10 - 30.34 2
3 15 198.98 - 7.5 - 21.62 3

4 10 90.380 -5 - 16.86 4

5 9.5 81.949 - 4.75 - 13.39 5

6 6 35.07 - 3 - 8.626 6
7 4 17.824 - 2 - 5.140 7
8 2 7.5437 -1 - 2.627 8

9 1.5 6.2298 -. 75 1.949 : 9
10 1.28 5.8009 - .64 .5153 10

11 0 5.1414 0 1.069 11
12 .34 5.5033 .17 2.968 12

13 - 1.9 10.133 .95 5.052 13

14 - 2374 12.528 1.187 6.691 14
15 I" 3.42 19.526 1.71 9.408 15

16 4.88 33.262 2.44 11.24 16
17 - 5.07 1 35.398 2.535 12.51 17

18 - 6 47.032 3 13.61 18
19 - 6.3 51.116 3.15 15.42 19

20 - 7.68 72.396 3.84 17.75 20

21 -10.28 118.55 5,14 27.02 22
22 -12.13 168.54 60.65 28.12 23

23 -14 221.12 7 32.02 24
24 -16 285.16 8 36.03 25

4

Table 9.10: Suboptimal Controller of Example 9.5 at k N-1.
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Comparing the hedging behavior of the optimal JLPC controller (see

figure 9.16) and the suboptimal controller of table 9.10, we see that

* The optimal controller hedges to ZN=-l- for -2.75< xN_1 <.
8125;

the suboptimal controller hedges to ZN=-l for

-2.226 < xN-1 < -. 8125

. The optimal controller hedges to ZN= 3  for 8 .06 2 5(xN-.l20.866;

*-'. the suboptimal controller hedges to Z=3 for 7 .762<xNli20.875

At time stage k=N-i the optimal controller (see (9.148)) has mN 1 (l)-6

pieces, one of which is not linear in XN-1  The approximate controller

has mN-l(l)=2 5 pieces, but all are linear inxN_1  Of course, we can re-

duce the number of pieces in the suboptimal controller by reducing the

number of grid points.

In table 9.11 we list the optimal and approximate controls, expected
"'-'-"N o t e t h a t t h e
costs and resulting zN values for various XN_ 1 values.

percentage of excess cost incurred using the suboptimal controller is

small for all of these values. As IxN_l) becomes large, the error will

become large since the suboptimal controller drives z to either -6 or

* .- +10 (the extreme values of the target grid). However for xN_1 within the

*-','-interval of interest, the suboptimal controller is quittaccurate at this

first time stage.

Let us now apply the suboptimal controller to time stage k = N-2.

Using the approximate expected cost-to-go we obtain an approximate

VN-I(NIrN_2 = 1) which has the structure

(tz3 + tz2 +WI (t)z +W° (t)VNZN-1lr-) = W3 (t)zN- + 2(t)z N- 1 ZN- 0 (9168).

YN- (tl) -(YN- (t)
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OPTIMAL CONTRIOLLER SUBOPTIM4AL CONTROLLER
' increase

N1 UN Z% VN-1 V4_ in cost of

suboptimaI

-15 9.545 -5.4545 145.52 9 -6 146.33 .557

-10 6.364 -3.6364 65.970 7 -3 67.08 2.774

-5 3.182 -1.8182 18.242 3.25 .1.75 18.33 1.68

- 3 1.909 -1.0909 8.0606 2 -1 8.08 .241

- 2.75" 1.75 -1' 7.1458 1.75 -1 7.1458 0

- 2.75* 1.75 -1 7.1458 1.75 .I 7.1458 0

-2 1 -1- 5.0833 1 -1 5.0833 0

- 1.5 .5 -1- 4.3333 .5 -1 4.3333 0

- I 0 -1' 4.0833 0 .1 4.0833 0

- .8125 - .187 -1- 4.1183 .187 -1 4.1183 0

- .8125* .795 - .0178 4.1176 .8125 0 4.1182 .015

.5 .572 .0717 3.6906 .5 0 3.708 .471

0 .2168 .2168 3.2966 .25 .25 3.300 .103

.5 - .1357 .3643 3.2562 - .25 .25 3.300 1.345

1 . .4858 .5142 3.5672 - .5 .5 3.568 .022

1.5 - .8333 .6667 4.2270 - .75 .75 4.249 .520

2 - 1.178 .8219 5.2330 - 1.25 .75 5.249 .306

5 - 3.180 1.820 18.368 - 3.25 1.75 18.38 .065

8.0625 - 5.0625 3 43.712 - 5.0625 3' 43.712 0

8.0625* - 5.0625 3" 43.712 - 5.0625 3' 43.712 0

10 - 7 3' 67.083 - 7 3" 67.083 0

15 -12 3" 162.08 -12 3' 162.08 0

20.866" -17.866 3" 337.28 -17.866 3" 337.28 0
. 15

20.866 -15.956 4.9096 337.28 -15.866 5 337.33 .015
V;- 25

25 -19.118 5.8823 482.28 -20 5 485.6 .688

Table 9.11: Performance of the optimal and suboptimal controller

at various x values.
N-1
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This approximate cost is computed via the steps of figure 9. 7. It has

?l 51 pieces which are listed in table 9.12. Note that each piece ofIN-i

this approximate ZN- 1 cost is either quadratic or cubic in ZNl. This is

similar to VN(ZN -irN_I=), which has quadratic and cubic pieces in ZN. In

section 9.8 we found that the true ZN_ 1 cost VNZNIrN2 =l) has many

fewer pieces than this approximate version has, and several of the

true cost pieces have complicated terms such as

[(-.00625)zN + .084891JV(72.44-5.33ZN-1

in them. Thus we see that for thjs example the approximate ZN_ cost

has more pieces, but a simpler structure. At successive time stages

the true zk-cOst Vk (zk rkl=j) will have even more complicated pieces;

the approximate cost Vk (zklrkl=j) will always have pieces that are

at most cubic in zk. Note that in this example VN_ (ZN _1rN2=) is

continuous in ZN-1. Therefore we have no specific values to include

n the target set of zN_ 1 values.

The next step in the determination of the suboptimal controller

is the selection of a set of N(zN-) values. In table 9.13 a set of

N(zN) = 34 such values have been arbitrarily chosen. Following the
N-1

steps of figure 9.17 we obtain the following approximation of the

optimal controller for example 9.2 at time k - N-2.

2
V (x ,r =1) = x + H (tI)x + G (t:l) (9.169)

N-2 N'-2 N-2 N-2 N- 2 (t 1 N- 2 N-2

_(x N rN 2 -) = -xN 2 + F (t:l) (9.170)
N- 2N-2 N-2 N-2

N (Xr-2r= ) = F (t:) (9.171)

for Q N2(t-l)< XN2< N2(t)

t =i..rN 2 (i)
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where the parameters in (9.169)-(9.171) are as defined in (9.157)-

(9.162) and the N-l(t) are defined in blocks 47, 54 of figure 9.17.

In table 9.15 we list the parameters for this example when the zN-2

grid of table 9.13 is used. Here aN- 2 (1) = 33. That is, the suboptimal

approximate controller has 33 pieces at time k = N-2. The suboptimal

controller described in table 9.14 has almost three times as many pieces

as the optimal controller. However all of the suboptimal controller

pieces are linear control laws in xN-2* Many of the optimal control

law pieces are difficult or impossible to obtain analytically.

In section 9.8 we obtained numerically the optimal control law,

expected cost and attained zN1 value for each item in a set of XN2

values (see table 9.6). In table 9.15 we compare the suboptimal

controller's behavior at these XN-2 values. Note that with the 34

target values that we have arbitrarily chosen (in table 9.13), the

resulting suboptimal has large errors for all XN-2 values (20%-30%).

Thus the error at the second time stage is an order of magnitude

greater than at k = N-1. In order to reduce this error we can

increase the density of the Zk+ 1 grid , but this increases the com-

plexity of the approximate controller.

The approximate controller described in this section is a

brute force approach to obtaining an approximation of the optimal

JLPC controller that has an easily implementable structure. As

we have seen, this approximation is prone to large errors after

only two time steps. We have not considerea more successful

approximation methods in detail here.
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A
wW) W, (t) W

I 
M I NIt

2.55 3 28.7325 -14.375

2 --- 2.3625 , -2.3906 -10.0126 -10.375

3 --- 2.55 1.5 10.17 - 9.906

4 --- 2.5344 1.1906 8.6386 - 9.219

5 --- 2.5188 .9025 7.3103 - 8.531

6 --- 2.5031 .6363 6.2074 - 7.844

7 --- 2.4875 .3906 5.2421 - 7.156

8 --- 2.4719 .1694 4.4589 - 6.462

9 --- 2.4563 - .0331 3.8032 - 5.906

10 --- 2.4719 .1513 4.3471 - 5.7813

11 --- 2.4563 - .0294 3.8248 - 5.219

12 --- 2.4719 .1338 4.2505 - 5.0937

13 --- 2.4563 - .0254 3.8451 - 4.531

14 --- 2.4719 .1158 4.1643 - 3.844

15 --- 2.4875 .2364 4.3971 - 3.156

16 --- 2.5031 .3346 4.5512 - 2.8125

17 --- 2.4875 .1705 4.2133 - 2.462

18 --- 2.5031 .2479 4.3093 - 2.316

19 --- 2.4875 .1756 4.2255 - 1.7813

20 --- 2.5031 .2313 4.2751 - 1.465

21 --- 2.4875 .1855 4.2416 - 1.0937

22 --- 2.5031 .2197 4.2603 - 1

23 .0917 2.9906 1.5157 5.1605 - .64

24 .0917 2.9438 1.4559 5.1414 .17

25 .0917 2.8969 1.4711 5.1401 .95

26 .0917 2.85 1.5607 5.0973 1.1875

Table 9.12, Part I; Parameters for approximate zN_ cost

v (zN lrN_2=) in example 9.5.
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27 .0917 2.8656 1.5997- 5.0289 1.684

28 .0917 2.8813 1.5471 5.0732 1.71

29 .0917 2.8344 1.7071 4.9368 2.44

30 .0917 2.7875 1.9356 4.6581 2.535

31 .0917 2.8031 1.8564 4.7610 3

32 --- 3.4156 .0604 7.1115 3.15

33 ... 3.3688 .3566 6.6433 3.36

34 --- 3.3844 .1664 7.1060 3.84

35 --- 3.3375 .5264 6.4148 4.17

36 --- 3.3531 .2612 7.2489 4.50

37 --- 3.3063 .6831 6.2997 4.95

38 --- 3.3219 .3435 7.5980 5.14

39 --- 3.275 .8254 6.3596 5.71

40 --- 3.2906 .4154 8.1909 5.76

41 --- 3.2438 .9554 6.6357 6.44

42 --- 3.2594 .4769 9.0696 7.15

43 --- 3.275 - .0694 12.1765 7.84

44 -- 3.2906 .6794 15.9985 8.50

45 --- 3.3063 -1.3513 20.5806 9.14

46 --- 3.3219 -2.0831 25.9646 9.76

47 3.3375 -2.8731 32.1866 18.866

48 --- 3.2906 12.5994 -243.034 22.866

49 -- 33:3 3.1231 108.308 29.88

50 -- 3.2594 56.4456 -1629.78 33.88

51 3.275 -3.3731 378.968 1

S '-Table 9.12,continued
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i ~~ z(i) zi

1-15 18 3

2 -10 19 3.15

3 - 7.5 20 3.84

4 - 5 21 4.50

5 -4.75 22 5.14

6 -3 23 6.065

7 -2 24 7

8 -1 25 8

9 -. 75 26 9

10 -. 64 27 10.065

110 28 13

12 .17 29 15

13 .95 30 18.866

14 1.187 31 22.866

15 1.71 32 25

16 2.44 33 30

17 2.535 34 35

Table 9.13: The N(z ) 34 target zN values at time k N-2
N-1i-

in example 9.5.
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I I

V2  x~ ,~2 ~ ~t:1 1target hoice of
i'-' v (XN '  

'r - l N
o
1 (t) ce o

N-2e N- -tH(:1 G (t;1) VzF (t: 1) ) ______j______

1 30 782.43 -15 -43.23 1

2 20 350.17 -10 - 30.34 2

3 15 198.98 - 7.5 .21.62 3

4 10 90.380 -5 -16.86 4

5 9.5 81.949 - 4.75 - 13.39 5

6 6 35.075 - 3 - 8.626 6

7 4 17.824 - 2 . 5.140 7

8 2 7.5437 - 1 - 2.627 8

.9 1.5 
6
.
2298  - .75 - 1.949 9

0 1.28 5.8009 .64 .5153 10

"- II 0 5.1414 0 1.069 11

12 .34 5.5033 .17 2.968 12

13 - 1.9 10.133 .95 5.052 13

14 -2374 12.528 1.187 6.691 14

15 3.42 19.526 1.71 9.408 15

16 - 4.88 33.262 2.44 11.24 16

17 -5.07 35.398 2.535 12.51 17

18 -6 47.032 3 13.61 18

19 - 6.3 51.116 3.15 15.42 19

20 -7.68 72.396 3.84 17.75 20

21 1 -10.28 118.55 5.14 27.02 22

22 -12.13 168.54 60.65 28.12 23

23 -14 221.12 7 32.02 24

24 -16 285.16 8 36.03 25

25 -18 357.23 9 40.12 26

26 -20.13 442.68 10.065 48.59 27

27 -26 727.87 13 59.29 28

28 -30 965.03 15 74.58 29

29 -37.732 1541.7 18.866 93.34 30

30 -45.732 2288.4 22.866 101.5 31

31 -50 2721.7 25 117.5 32

32 1.60 3897.1 30 160.1 33

33 70315497.8 35 34

Table 9.14: Suboptimal controller of example 9.5 at time k = N-2.
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OPTZNAL CONTROLLER SUBOPTIMAL CONTROLLER

MN-2. 'N-
2  ZN- M H2 zN2 -2  cost of suboptimal~

________________________ __________controller

3.4756 i-2.476 1 13.463 -2.526 .95 15.61 15.94

4.0628 -2.876 1.187 16.605 -3.113 .95 18.92 13.94

4.2743 -3.024 1.25 17.849 -3.324 .95 20.28 13.61

6.8866 -4.887 2 38.491 - 5.177 1.71 43.40 12.75

10.639 -7.639 3 85.44 - 8.199 2.44 94.53 10.64

10.662 -7.662 3 85.79 - 8.222 2.44 94.91 10.53

PI14.229 -10.229 4 149.62 -11.079 3.15 163.9 9.57

17.792 -12.792 5 231.64 -12.652 5.14 252.2 8.88

21.351 -15.351 6 331.79 .16.211 5.14 354.9 I6.97

21.582 -15.517 6.065 338.93 -16.44 5.14 362.5 6.95

24.916 -17.916 7 450.29 -19.78 5.14 483.2 7.31

28.504 -20.50 8 588.12 21.50 7 634.5 7.89

35.987 -25 92 10.065 935.52 -27.99 8 1004.4 7.37

40 -28.84 11.164 1154.4 -32 8 1245.2 7.77

so -36.10 13.904 1804.7 -37 13 1927.9 6.82

68.042 -49.19 18.847 3343.5 -53.04 15 3553.4 6-~8

68.10" -49.24 18.863 3349.2 -53.1 15 3559.6 6.28

68-10+ -49.22 18.882 3349.2 -53.1 15 3559.6 6.28

68.111 -49.23 18.885 3350.3 -53.1 15 3560.1 I 6.28

70 -50.58 19.422 3538.8 -55 15 3765.0 6.39

75 -54.15 20.849 4062.5 -56.13 18.87 4336.8 6.75

82.089 -59.20 22.886 4866.1 -63.22 18.87 5182.9 6.51

90 -64.93 25.07 5848.3 -71.13 18.87 6245.8 6.80

100 -72.14 27.86 7219.0 -81.13 18.87 7768.5 7.61

.

Table 9.15 Part 1: Performance of the optimal and suboptimal controller

at various x~ values.

[-"
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OPUNPAL C~bItNUZ3 ioru COO~l M M =W~
% increase in

W N-2-2 
5
N-2 V- cot O2 SNb,2i ..a

controller
-20 11.2167 -8.7833 227.806 12.5 - 7.5 - 298.98- 31.24

-12 6.7300 -5.2694 84.213 .9 - 3 107.075 27.15

-10.817 6.0665 -4.75 69.075 7.817 - 3 87.180 26.21

-10 5.7938 -3.933 60.032 7 - 3 75.075 25.06

- 8 4.4650 -3.535 36.004 6 - 2 49.824 38.38

- 7 3.8861 -3.1139 31.040 5 - 2 38.824 25.08

- 6.278 3.4651 -2.813 25.732 4.278 - 2 32.125 24.85

- 5.581 3.0809 -2.5 21.168 3.581 - 2 26.6481 25.89

- 3.344 1.8443 -1.5 10.151 2.344 - 1 12.0381 18.59

- 2.243 1.2337 -1.010 6.763 1.493 - .75 7.8961 16.76

- 2.233 1.2275 -1.005 6.73 1.483 - .75 7.8671 16.89

-2.233 1.2379 - .996 6.73 1.483 - .75 7.867 16.89

" 2.114 1.1644 - .95 6.482 1.364 - .75 7.528 16.13

- 1.984 1.0838 - .90 6.158 1.234 - .75 7.190 16.76

- 1.587 .8371 - .75 5.395 .947 - .64 6.288 16.55

- .9117 .4117 - .5 4.551 .2717 - .64 5.465 20.09

" .2204 - .0296 - .25 4.287 .2204 0 5.110 21.06

- .0802 - .1196 . .2 4.308 .0802 0 5.148 19.49

.2021 - .3021 - .1 4.427 .2021 0 5.1821 17.06

.4869 - .4869 0 4.651 .4869 0 5.378 15.64

1.2102 - .9602 .25 5.697 - 1.04 .17 6.556 15.09

1.9493 -1.449 .5 7.478 - 1.779 .17 8.640 1 15.54

Table 9.16, continued.
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9,10 Summary

In this chapter we have extended the solution methodology of chap-

ters 5-8 to encompass jump linear control problems that involve additive

input noise in the x-dynamics, The presence of additive inout noise pro-

foundly changes the nature of the optimal controller in that it is not

possible to use the control input to drive the x process into a specified

interval of values with certainty,

In extending the methodology of chapter 8 to include input noise we

lose the piecewise-quadratic nature of the optimal controller. We have

therefore relaxed the restrictions on the k-operating costs, x-terminal

costs and from trarzition probabilities (requiring only a finite number

of convex or concave pieces) because the piecewise-quadratic structure of

the optimal controller cost is lost in any event.

In sections 9.2 - 9.7 we formulated the general JLPC control Pro-

blem, obtained a general one-step solution Procedure, investigated the

qualitative properties of the optimal one-step solution, and presented an

algorithm (flowchart) for the computation of the optimal control-

ler for finite time-horizon problems. This algorithm was applied to two

time stages of an example in section 9.8. In section 9.9 we developed a

suboptimal JLPC approximation that results in controllers which have piece

wise-linear control laws (in xk), at all times k-N-l,..,k. This qubon-

timal controller was applied to the example of section 9.8 and the optimal
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and suboptimal controllers were compared.

In the next chapter we will consider the application of the

methodology of this thesis to jump linear control problems poss-

essing n-dimensional states with x-dependent and u-dependent form

transitions and having form controls. These problems can be

addressed using approximations similar to the approximation

technique of section 9.9.

.4.
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10. JUMP LINEAR CONTROL PROBLEMS WITH NONSCALAR x AND CONTROL-

DEPENDENT FORM TRANSITIONS

10.1 Introduction

In part III and chapters 8-9 of this thesis we have develooed

and applied a basic approach for the solution of optimal jump linear

feedback control problems. This methodology is based upon the following

tactic:

at each time stage k and from each form rk=j , the control prob-

lem is broken up into a set of constrained subproblems that are

relatively easy to solve.

then the solutions of these constrained subproblems are compared

at each xk value to determine the optimal controller.

In this chapter we will briefly consider how this general solution ap-

proach can be applied to several other classes of jump linear control

problems. Specifically, we will examine

JLPC problems involving nonscalar x process (Section 10.2)

JLPC problems involving u-dependent form transitions (Section

10.3)

and

JLPQ (and JLPC) problems where the form process can be directly

or indirectly controlled by a separate form costrol

(Section 10.4).

Combining these extensions, we obtain the general control problem for-

mulation that was introduced and motivated in detail in chapter 1. Our

motivation for addressing these issues here is to demonstrate that

the basic idea of this thesis can potentially be applied to
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more realistic fault-tolerant optimal control problems.

As we will see, each of these probl-.ms represents a generalization of

the results of chapters 5-9 that involves an increase in com-

plexity in both the optimal controller derivation and the implementation

of the resulting control laws. However the basic solution approach of

Part III remains valid for these problems and it yields methods for

their solution.

10.2 Nonscalar x Processes

When the x-process in a JLQ,JLPQ or JLPC problem is n-dimensional,

the basic solution idea of dividing the problem into constrained

subproblems is still a valid one. However there are fundamental dif-

- ferences in the resulting subproblems.

straints. Recall that in the problems of chapters 5-9 the optimal

JLPC control problem is converted into the comparison of a set of

subproblems constrained in xk+l (or in zk+l for noisy JLPC problems)I

which is determined by the control uk when xk and rk=j are known. The

qi different subproblems involve constraining zk+l to be in ak+l

certain interval
^J j Aj

kl(t) =(Yi+l (t-l), Y Wt))
k+l k+l

of values on the real number line. Thus the optimal solution of each

subproblem either places k+l in the interior of the constraint inter-

val k Wl(t) or on one of the (at most two) boundary points. When

the x process is nonscalar, the constraint set t ,,K for each subproblem is not an interval on the real line but, rather,

surface in n-space. Ikk j) , the constraint in a par-

ticular subproblem is active, we must determine the best location
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for ZK+1 on the constraint surface. Thus we have uncountably many

points to consider (instead of two).

A second complicating factor in the consideration of n-dimen-

sional x-processes in JLQ, JLPQ or JLPC problems relates to the com-

parison of subproblem solutions (so as to determine the optimal con-

trol law for each xk . In the scalar x case this involved finding the

intersections of convex functions of x. Using the monotonicity prop-

erty of the mapping

(xk rk J) : - Zk+ 1

in the scalar case (as in Proposition 9.6), only one such intersection

needed to be found for some (but not all) pairs of valid, eligible

candidate costs. For nonscalar x we must find the curves described

by the intersection of valid, eligible candidate cost surfaces. This

comparison was greatly simplified for scalar problems by the ordering - .

of the real line. For n-dimensional problems the lack of as simple

an ordering in n-space complicates matters. For some classes of

problems there may be special orderings that facilitate detailed

analysis. In particular ideas such as the endpiece and middlepiece

(in scalar problems) appear to have natural extensions in nonscalar

problems. Some of the difficulties involved with the analysis of

these problems are illustrated in the following example:
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These difficulties are illustrated in the following examplej

Example 10.1: Consider the following control problem:

N (u O~ )u x+ (rk+
k k k+l k+lxk+l--: rain E (U'(r)k

0mN (uk 'O )u )x Or )
U *- - ~N-N N Nw e '+x (r) x (10.1)

where R(j)> 0, Q(J) > 0, QN(j) > 0 for j = 1,2 and

Xk+1 ' A(rk)xk + B(rk)Uk  (10.2)

Prob{rk+l = j rk = i, xk+ 1 = x} = p(i;j:x)

(10 .3)r E{l,2}(
k

with form transition probabilities

p(2.1) =0

p(2,2)=i 2 (10.4)

p(l,2:x)= 11 if x'Sx<a
2I2 if x'Sx>a 2

where S=S' >0 is an nmn matrix. In figure 10.1 we show the two form
transition probability pieces in (10.4). Here p(l,2:x)=X if x is

inside an n-dimensional ellipsoid centered at zero. For convenience

we will assume that the x process has dimension n=2.

The conditional expected cost-to-go VN NN rN=1 1 VN(ZN IrN_1=)

is (here zN= xN since there is no noise):

4 2AN~ ifN x'' () x1 i) = x Nsx 2

.N N N (10.5)
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Figure 10.1: Form transition probability p(l,2:x) in example 10.1.
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where A +X (21
KN(i) = (1-X.) (Q(1) + NQ(2) + Q(2)) (10.6)

for i 1, 2.

If we assume that

KN (1) < KN (2) (07AA

(as in the commensurate goals problem of chapter 7) then VN((XNjrN_1=I)

has the general shape that is shown in figure 10.2. Note that this

function is discontinuous for any xN such that NxN = 2

We can rewrite (10.1) - (10.6) at time k=N-1 as the comparison of

two constrained subproblems:

VN(xN~IrN~l=) = min VN_(cNI rN_ 1; t) (10.8)
N-i Vt=l,2 N- i

where u ' R(1) uUN-i UN- i

V N-(X Nl,r N-;t) mim +
N- N-1 N-i'

UN KN (t) x N

s.t.

XcA (t) (10.9)

where the constraint regions are

2
'.(1) {XX I SX < O

N N N N
(10.10)

2
A.(2) = aX x'SX

A
If the two conditional cost matrices KN(1) and KN(2) are scalar mult-N N

iples of each other, then the ellipses described by

A A
x' K (2)x N = y K (1)X

N N 2N N

in figure 10.2 will be oriented along the same axes in the x-plane. In
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.. 5X

""2 -ILLIPSG X* (1 X WV

ELLIPSE 94 wi X M

at ax XN XN U

A
Figure 10.2: conditional expected cost V N(x N r Nl= 1) in example 10.1

when Kj(l) <%( 2). The upper "bottomless cone" is x KN(2)xN .The

A 2
lower cone is x'K (1)x ,which applies when x'Sx <a

N N N N N
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this case the optimal controller will have the three-part structure that

is shown in figure 10.3. For xN-1 in the ellipsoidal r4ion N_1(1),

the optimal controller places xN in A (1). For x in the ellipsoidal
N N-1

ring SNl 2), the optimal controller places xN somewhere on the ellipse

A 2
xlK(xN =

in figure 10.2. Here the controller is hedging to this smooth curve.

For X in 5 (3), the optimal controller places x in A (2). If
xN-l N-k AN N

the conditional cost matrices K N(1) and K N(2) are not scalar multiples

of each other, then the domains of the optimal controller at k = N-1

may take any ot the shapes in figure 10.4.

* At the next time stage, the conditional cost VN_ (xNIrN=2) will

have a domain similar to those in figure 10.4 even if figure 10.2

applies (unless the ellipse x'Sx is aligned with the x-plane boundary

ellipses in figure 10.3). Thus for all but the most trivial cases, the

shapes of the optimal controller domain (in the x plane) will vary

greatly (and be difficult to describe, in general) as (N-k) increases.

7..
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Figure 3: V l(x lr ) in example 10.1 if the conditional cost

boundary ellipses in figure 10.2 are aligned.
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Figure 10 4 Three other VN-1 (x N-l'r Nl ' ) domain shapes in example 10.1

if the conditional cost boundary ellipses are not aligned. in each -case,

2thereio 8 corresponds to hedging to the curve x'Sthe) regonN N
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Example 10.1 suggests that it is extremely difficult, in general, to

obtain the solutions of n-dimensional versions of the problems of chapters

7-9. However for certain subclasses of these problems with special

structures we can obtain greater insight into the nature of the optimal

controller. One such class consists of JLQ (or JLPQ) problems with

scalar x and u and form transition probabilities that are piecewise-

1constant in u and x. As we will discuss in the next section, such

problems are solvable with a relatively minor modification of the sol-

ution algorithm of chapters 7 and 8. The analysis of other special

classes of n-dimensional problems for which the x-dependent problem

is solvable is a topic for future investigation.

We can also think of obtaining approximations of the optimal con-

troller for n-dimensional problems. One way to do this would be to

use the approach of section 9.9. Basically, this would involve carrying

out the following tasks at each time stage k (and in each form j):

1. Compute (by numerically integrating over x ) the xk-

A
conditional cost surface Vk+l (xk+ll rk=j). This is done

by generalizing the steps of figures 9.6-9.7 to account

for the n-dimensional x.

2, Compute (numerically) the zk+l-conditional cost surfact

V (z lr =J) at (only) a set of target Zk l values.
k*1 -k+l k l

s in section 9.9, these target values are chosen

arbitrarily. Finding an intelligent way to choose them

is an open question.

3. For each k value of interest, compute the cost incurred
2.

These systems can be thought of as two-dimensional x problems by

augmenting x with the control.
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if the controller drives Zk+ 1 to one of the chosen

target values.

4. Select as the optimal control law at each x of interest

the control in step 3 that results in the lowest

expected cost-to-go.

This approximation scheme can be used (in principle) to obtain an

approximation of the optimal controller for any specific problem of

interest . It does not offer us much insight into the qualitative

properties of the optimal controller, however. The investigation and

analysis of the general nonscalar x problem (or special classes of it)

* remains a topic for future investigation.

10.3 Form Transitions that are u-Dependent

From a practical standpoint, contrQl-dependent form transitions

are an important part of the overall fault-tolerant control problem.

A large class of component failures are related to dynamic control

input choices. Indeed, actuator -dependent failures are a major source

of difficulty in many transportation, military, electric power and

communication systems.

We have deferred examining this class of problems because unless

there is no x-cost in the problem formulation, after one time step the

optimal expected cost-to-go (and conditional expected costs) will have

a piecewise structure in x (as well as in u) if the transition

probabilities are piecewise in u. When both x and u are scalar,

however, this does not present a serious difficulty. Conceptually,

-- such problems are basically the same as in the scalar-x, x-dependent

only case.
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Consider form transition probabilities

Pr{rk+l=jl rk=ixk+l=xuk=u)}= p(i,j;xu) (10.11)

that are piecesiwe-constant in x and u. At each time step the optimal

expected cost-to-go Vk(xkrk=j) is given by

m2 A
Vk(xkirk- j ) = Min a(j) + Vk+l(xk+ 1 rk=Jk =u) (10.12)

where the conditional expected cost-to-go is parameterized by both

xk+ and uk. The minimizations in (10.12) is solved by breaking up

the problem into a collection of subproblems, each correspondint to

keeping Xk+1 in a certain interval and simultaneously keeping uk in

a certain interval. The solutions of these subproblems are piecewise-

quadratic in x, with unconstrained pieces (resulting from uk in the

interior of the u-constraint interval in question and the resulting

also in the interior of its constraint interval) and the subprob-

lems also have actively constrained pieces (where either uk or Xk+1

(or both) is at a constraint boundary point). The effect of the

constrains in uk is to complicate the book-keeping regarding the inter-

vals of Xk values where each subproblem solution cost function piece

ts valtd. Nevertheless, we obtain the optimal cost Vk(xkrk=j) and

contXol uk(- ,r =j) by comparing a collection of piecewise-quadratic
kk

in-N cost functions, as in chapters 5-9. We consider the following

simple example that illustrates the effect of having u-dependent

form transitions:
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-xample 10.2:
Let

Xk+ 'k+ 'k if rk =1

2x + uk if rk -2

p(l,2:u) 1/4 Iu|4,l

3/4 lul1'

p(1,1:u) I- p(l,2:u) p(2,2)=l p(2,1)0O

where we minimize

min E + 2 1) + X2 KT(rN) (10.13)

U , - . ~~
o

with terminal conditions

'Sr(') - 0 KT(2) 3

This is similar to example 5.1 (which was modified in chapters 6,7,8

and 9), except that the form transition probability is piecewise-

constant in u.

In form rk =2 we have

2
Vk(xkrk-2) = xK J2) (10.14)

where

K(2) - 3
N

=(2) 4(Yk+1(2) + 1) (10.15)

2 + K+1(2)
2+l

as in earlier versions of this example since, once the system enters

form r - 2 it cannot leave.

We also have that
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2
VN(xrN ) = xKT(1) = 0 (10.16)

Applying dynamic programming we have at time k N-1:

2(+P11 2
N-1 'N1) [X + VN(XNrN=)]

UN1  m+ 1 :
VN-1 + c N-12 : N-) N + VN(xN'r =2)]

2UN_ 1-i + P(l'l:uN-)xN + p( 1 ,2:U )4 2 (10.17)

Here the conditional expected cost-to-go is

V(13/4)x if lu
VN (xNlr Ni=i'uNl )= N -IkN1*>

(""N ifIUN e1 (i0.18)

The two constrained subproblems that arise at the last time stage are

VN-l(xN-l'rN-1l _N i1) mir S -1 + (13/4)%
IuN11 1 (10.19)

_111) in 2 (74 1.0

VNil(xNil'rNl=1Iuli)=m uN 1 + (74 10N0

N5-11<1

For jN ') we have

v min u2  + (13/4)(x_ 22 ) (10.21)
N-i N- 'N-i XN-i N-i N-i UN-i 1

Differentiating with respect to UN- 1 and setting to zero we find that

the unconstrained solution to (10.21) is

2 ,U
2,i = -(1 3 / 7 ) XNI 

(10.22)
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2,U 2

N-1

V -(3/7)wit(0.23

'. This is valid if

. I N_ | (17/13) (10.24)

(ie, in this case we have lUN-l ' 1). If

IxN-11 - (17/13) (10.25)

we can drive the system to the constraint boundary
bo'.;.[ 2 , + -

UN 1 =1 (10.26)

obtaining

= XNi +1 (10.27)

with the cost

V + 2N-I (13/4) + 13xN-i +(15/2). (10.28)

'7'
Alternatively we can drive the system to the constraint boundary

" 2,- +

uN- 1 (10.29)

obtaining

2,- +x2 = x -1i (10.30)
XN N-i

with the cost

2,- 2VN_ 1 = (13/4) XN_ 1 13xN_ 1 (15/2) (10.31)

Similarly if IUN-11 <1 we have

IU - (7/11)xN- (0.32)

with

V1,U 2-1 (7/ii)xN-I (10.33)

which is 1?alid for

j" - I ( (11/7) (10.34)
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If

XN_ (11/7) (10.35)

we can drive to the boundary
,+ +19+ =i (o10.36)

UN-1 1

obtaining

1 + (10.37)
'N XNll

with the cost

V1 , + 2
N-( 7/4 )xN_1+7xNl +(9/2) (10.38)

If

N-i % -(11/7) (10.39)

we can drive to the boundary

U1 - (10.40)
N-1

obtaining

xN = -i-- (10.41)

with

V1- (7/4) -7x. (10.42)

Nota that all six of the above candidate cost-to-go pieces are

quadratic in XN 1, and are defined over regions of validity in

terms of X-l (and not u ). Thus once these candidate costs and
XN-l N-i

their regions of validity are established we can find the optimal

controller by finding the intersections of quadratic functions, as

in chapters 5-8. In figure 10.5 we show the regions of validity for

each of the candidate cost functions in this example.
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Since (13/17) >(7/11) we have

v2 U VlvN-I > vIU for all xN_ 0

"'U
Thus V is optimal over the interval (-11/7,11/7). For

N-1
2,U 2 ,U

sufficiently large, V2 'U will be optimal. We find that V2 'U andN-I1 N-I

V intersect in (-e,-ll/7) at
N-1

XN.1 = -6. 3897.

Consequently the optimal controller at time k N-i for this example is

2 ,U for > -6. 3897
N -i o X

Vl for -6.3897.x (-11/7
VN 1N-

VN1 (xNl rNll) = for -1.571 -11/7 ZxN_l< 11/7

v ' for 11/7 (x e6.3897
VN-i N-i

2 ,UV2 ,U  for xNI 6.3897N-I X-

(10.43)

The optimal expected cost is thus piecewise-quadratic in xN_. At the

next time stage we will have a conditional cost that is dependent on

xN 1 and UN 2 ' and the resulting optimal cost VN_ 2 (xN_2 rN2=1) will

be piecewise-quadratic in XN_2 . Thus at time k- N-2 (and thereafter)

the optimal controller must take into account both u constrants and

x constraints.

In this section we have not investigated the qualitative properties

of the control-dependent JLQ problem in detail. However it is reasonable

to assume that results similar to those of chapters 5-6 and 8 are
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L
accessible. One important area for future research is an examination of

how controllers involving piecewise-constant u-dependent form transitions

differ from x-dependent problems. One difference is immediately

apparent from the above example: the optimal controller here hedges to

values of UN_1 as well as to values of xN . Thus for the scalar case,

the optimal controller can hedge to either points or lines in the

*' two-dimensional u-and-x space.

10.4 JLPC Problems with Form Controls

In this section we consider JLQ, JLPQ and JLPC problems where

the form process can be controlled. The optimal controller chooses,

at each time k, between a finite number of control options. These

options either entail changing form transition probabilities ("in-

direct from control" in the terminology of chapter 1) or deterministi-

cally switching between forms ("direct form control") The form con-

trol decision is made using observations of

It is assumed that the form would be x-independent if no such controls

were applied.

Through the use of form controls, we can endow the JLQ controller

with the active hedging behavior that is one attribute of fault-tol-

erant control systems.

Let us consider the following problem formulation (as in (1.1)-

(1.10)):7

- I
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Xk+ 1 = A(rk)xk + B(rk)uuk + -(rk)vk (10.43)

Prob {rk+l j rk = io k - q } p(i,J;a) (10.44)

- (10. 45xA(r rk )x;'+ ~rrXk+l = 1rk+l + Z(rk k+ 1 )

q = (1,2,...,L} L <

where L is a set of form control options. We assume that (xkrk) is

perfectly observed at each time k, and we seek to minimize

N-1 IR(rk)uk + 1+i Q(rk'rk+l; k)xk+j

min J 0k(Xor 0 E 0

0
+ x KT(rN, )X +H (r_ ;q

N-G N rN-i' + NN- 1)  T N

k '''''N-1
0 .-+-(r rTN-1 N' N-l)

(10.46)

where R(j)> 0, (10.47)

(Q(i,j;a) S'(i, j;q)/2

S(i,j;q)/2 P(i,j;c) ) _ 0

Sand (10.48)

TK U,(iJq) H;(i,j;q)/2 ) 0 (10.49)'..', '. ~HT (i,j ;q)/2 GT(i,J ;q) - i.9

for all i,j cM and qc L . We will optimize over all feedback control

laws of the types

uk  fk(N ,..xk;rk,..rk;Uk,..Uk ;q,..qk )  110.50)

0 0 0 0

I'-"qk- gk (x k krk k rk "'" k" '''k-I
0 0 0 0
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Thus this problem is a modification of the problems addressed in

chapter 4. Note that we allow for different costs O(.), S(o), P(.),

KT ( - ) , HT ( . ), and GT( -) , depending upon the form control.

This lets us model costs of maintenance, switching to backup systems

and the like. Also note that in (10.44), the form transition pro-

bability p(i,j;q) takes a different value for each form control

option q.

We could obtain the optimal controller for any pre-specified se-

quence of form controls qk .. "N , using Proposition 4.2.
0

These quadratic -in-xk solutions (not piecewise-quadratic) would

then have to be compared to determine the best sequence of options.

This method of finding the optimal controls is clearly unsatisfactory

since the number of form control options to be evaluated grows geo-

metrically as (N-k) increases i.e., as L(Nkl)

An alternative approach is to apply dynamic programming. At each

time step we find the optimal cost by considering the intersections

of the L optimal costs-to-go from (xkrk=j) that correspond to each

choice of form control.

Applying dynamic programming, we have

VN (xN rN xr 4Irl, rNN 1 )x +HT (rN rN;qN~l )xN +

(10.52)
+GT (rN-1 r ;qN_ 1)

Rj l(10.53)u 1 R(J)U_
VN(xNIrNj) m ain

+
u
N-1-[ . N- xN(JrNQN-l)XN + S J'r'Nl)X

E
+P(J,r + VN(xN,rN - j , rNcN
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and for k =N-2,N-3,...,k

k j )uk

+

Vk (xkr k=j) = min x' Q(j, qk )

uk E + S~~ k k P( , q
+ rk+l' k+k

uk
E + SV klqk~+(X , +~

k+1 k+l k+l

If xk is scalar and there is no input noise, we can use the algorithm of

chapters 5-7 to find the L piecewise-quadratic (in xk) costs associated

with the different form control options at time k. These cost functions

are then evaluated and compared at each x (by finding their intersec-

tions), and the best choisce of q is chosen for each xk value. That is,

the control qk depends explicitly on the observed value of k as well as

rk. The resulting optimal expected cost-to-go is thus also piecewise-

quadratic in xk . The use of dynamic programming lets us "prune" the

tree of form control options; at each time we must compare at most L

of them.

This approach to form control problems can alsO be used for

scalar prqblems subject to additive input noise, using the JLPC

algorithm of chapter 9.
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10.5 Summary of Part IV

In part III of this thesis we developed a basic approach

to the solution of jump linear feedback control problems that con-

sists of the following tactic:

at each time stage k and from each form rk=j, the con-

trol problem is broken up into a set of constrained

subprobl ems that are relatively easy to solve

the solutions of these constrained subproblems are then

compared to determine the optimal control law and ex-

pected cost-to-go.

In part IV of this thesis we have used this solution approach to de-

termine the optimal feedback controllers for several more general

classes of jump linear control problems. The results of chapters

8 - 10 allow the application of the methodology of chapters 5 - 7

to more realistic control problems.

In chapter 8 we considered a modification of the solution

algorithm of chapter 7 that lets us solve problems involving:

. x operating costs and terminal costs that are piece-

wise-quadratic in x (rather than just quadratic)

. cost pieces that are concave-up as well as concave-

down.

This jump linear piecewise quadratic (JLPQ) control problem is

solved using an off-line, recursive algorithm. As in the JLQ pro-

blem of part III, the optimal JLPQ control laws are piecewise-

linear in x and the optimal expected costs-to-go are piecewise-

quadratic. Unlike the JLQ case, the number of optimal controller

pieces may grow at a faster-than-linear rate as the number of stages
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from the finite terminal time increases. The piecewise structure

of the optimal controller is caused by both the piecewise-constant

nature of the form transition probabilities (as in part III) and by

the piecewise-quadratic nature of the x-operating and terminal costs.

In chapter 9 we extended the solution methodology of chap-

ters 5 - 8 to address a larger class of scalar jump linear control

problems, possessing additive input noise and a more general class of

x-dependent form transition probabilities, x-operating costs and

x-terminal costs. Specifically we considered scalar jump linear

control problems with quadratic control penalties and

input noise densities that are twice continuously dif-

ferentiated except at a finite number of points,

" x-operating costs Q(x,r), x-terminal costs QT(x,r)

and form transition probabilities p(i,j-x) that con-

sist of a finite number of convex or concave (in x)

pieces.

We call this the jump linear piecewise convex (JLPC) control problem.

The major extension in chapter 9 is the inclusion of additive input

noise in the x-dynamics. Additive input noise profoundly changes the

nature of the optimal controller. The piecewise-quadratic structure

of the optimal cost and piecewise-linear structure of the optimal

control laws is lost due to the "blurring" effects of the noise. In

chapter 9 we show how JLPC control problems with additive input noise

can be reformulated (at each time stage) as problems that do not

possess input noise. This is done by breaking the noisy JLPC

problem into a comparison of subproblems that are constrained in

the value of the artificial variable zkl.
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zk+l=a(j)kk+b(j)u k

Xk+I -  () k

which is determined by control uk when x and rk=j are given.

These reformulated problems can be solved using the approach of

chapters 5 - 8.

The optimal JLPC controller can be obtained following the

steps of an algorithm which is a generalization of those developed in

chapters 7 and 8. However many of the algorithm steps are quite dif-

ficult or impossible to carry out analytically. Consequently, nu-

merical methods must be used, as was illustrated in chapter 9.

This requirement of numerical approximations, and the fact the op-

timal JLPC controller does not have the nice inductive piecewise-

4quadratic cost structure (at each time stage) motivated consideration

of approximations of the optimal controller that are easier to determine

and to implement than the optimal controller. We examined one approx-

imation scheme that yields controllers that have piecewise-linear

control laws at each time.

In chapter 10 we examined further extensions of the solution

methodology of Part III. We first considered jump linear control

problems where the x process is not scalar. This class of problems

is far more complicated than in the scalar case. We can, however,

obtain approximate controllers for these problems using the ideas

of section 9.9. The next topic of chapter 10 was jump linear

quadratic control problems with u-dependent form transitions. This

problem is of practical importance since it captures the issue of
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actuator-dependent failures and it allows us to examine conflicts

between system performance and reliability requirements. We

demonstrated (via an example) that these problems are accessible

using the ideas of chapters 5-8 when both x and u are scalar.

In chapter 10 we also consider JLQ problems (and JLPQ

problems) where the form process can be controlled on the basis of

observed xk and rk values. This allows us to study controllers

that use strategies such as preventive maintenance, switching to

backup systems in anticipation of failures and the like. For such

problems with scalar x and x-dependent form transition probabilities

(a priori), after one time stage (solving backwards from a finite

terminal time) the optimal control problem resembles the x-depen-

dent JLPQ problem of chapter 8. The optimal expected costs-to-go

are piecewise-quadratic in x and are indexed by the choice of form

control qk as well as the current form rk, at each time k.

In conclusion, in part IV we have extended the results

of chapters 5 - 7 to more general jump linear control problems

that involve more complicated system and cost descriptions. These

extensions are motivated by a desire to make the solution approach

of part III applicable to more realistic control problems. We

believe that the results of parts III and IV comprise an important

step in the development of techniques for fault-tolerant control

system design.
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11. CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

Using dynamic programming, several classes of the discrete

time jump linear control problem formulation of chapter 1 have been

solved. In this chapter we will briefly summarize the results ob-

tained and we will identify a number of directions for future re-

search.

Let us begin by considering the basic assumptions of the

control problems we have studied. This thesis focuses on systems

where the form observations are not noisy. This has not been done

because the noisy observation case is unimportant. The reason for

this problem restriction is that, even when the form is perfectly

observed, the solution of control problems of this kind for the x-

and u-dependent form transition probability cases is very difficult,

previously unsolved, important, and useful in terms of the insight

which it provides us regarding the tradeoffs between reliability

and system performance goals in fault-tolerant controller designs.

An important task for future research is the study of these problems

when the form process is not perfectly observed. Two cases which

merit investigation are

problems where only xk is observed, in the presence

of additive noise

problems where a noisy version of rk is observed

One recommended strategy for this analysis is to consider suita-

bly modified versions of the two archetypical single form-transition

problems (i.e., commensurate and conflicting performance and reli-

ability goals) of chapter 7.
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In this work we have restricted our attention to the

fault-tolerant control of discrete time systems. As described in

chapter 1, there are several practical reasons for doing this. In

addition, the discrete-time formulations of these problems are

much more easily analyzed than continuous-time ones. When dynamic

programming is used to solve discrete-time trajectory control pro-'

blems there is no partial differential equation that must be solved.

Thus we need not grapple with the unsolved nonlinear partial dif-

ferential equations that arise from continuous-time versions of the

control problems of parts III and IV. The use of discrete-time

problem formulations in this work has enabled us to gain consider-

able conceptual insight into the structure of fault-tolerant control

systems. The continuous-time version of the Markovian form JLQ

problem (of part II) was first formulated and solved by Krasovskii -

and Lidskii r34] , and later by WonhamL761 and Sworder [63.

The study of continuous-time versions of the problems of parts III

and IV is a challenging topic for future research. The solution

of a class of nontrivial continuous time jump linear control problems

with nonmarkovian, x-dependent form transitions would be a

significant contribution.

In part II of this thesis we considered JLQ control pro-

blems for n-dimensional systems with Markovian form transitions.

The noiseless case was addressed in chapter 3, and in chapter 4.

This problem formulation was extended to include jump costs, af-

fine resets of x and additive white input and x-observation noises

(but with the form process still perfectly observed). The optimal
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control laws that are obtained are linear in x, with a different law

for each form. The expected costs-to-go are quadratic in x (for

each form). All of the control gains and costs are obtained by sol-

ving off-line a set of precomputable Riccati-like difference equa-

tions (one for each form). Necessary and sufficient conditions

are derived for the existence of a set of steady-state constant ex-

pected cost-to-go functions. It is shown that the corresponding set

of time-invariant steady-state control laws stabilizes the control-

led system, in that E{XkXk I)-f0 as (k-k0) 4d and that the steady-

state control laws minimize the limiting expected cost-to-go as

(N-k 0)40, with finite optimal expected cost.

The presence of additive (usually Gaussian) white observa-

tion and input noise does not complicate these problems. Since the

6form is perfectly observed (with delay), a separation theorem like

that of the standard LQG problem follows. In each form, a Kalman

filter estimates x, and this estimate is then used by the control

law for that form.

The results of chapters 3 and 4 suggest several directions

for future research:

1. Proposition 3.1 specifies a set of coupled recursive

Riccati-like difference equations whose solution

specifies the optimal JLQ controller. An efficient

technique for solving these coupled equations is

needed.

2. Proposition 3.2 provides necessary and sufficient con-

ditions for existence of the optimal steady-state

JLQ controller. These conditions are not easily
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tested for nonscalar-x problems, however since they re-

quire the simultaneous solution of coupled matrix equa-

tions containing infinite sums. In Corollaries 3.4

and 3.5 sufficient conditions that are based upon singu-

lar values are presented that are somewhat more tes-

table for some problems. However the derivation of

easily calculable conditions for the JLQ steady state

problem (like the controllability and observability

conditions of the LQ problem) remains an.open question.

3. A more restrictive sufficient condition for the ex-

istence of steady-state optimal controllers for the

continuous time version of the problem was developed by

Wonham761. The attainment of necessary conditions

for the continuous time problem remains an open ques-

tion.

In part III (chapters 5,6 and 7) we have considered scalar JLQ

control problems that involve state-dependent structural changes.

This class of nonlinear stochastic control problems yields controller

designs which endow systems with fault-tolerance, in that the con-

troller takes into account known system limitations and failure

likelihoods so as to achieve the best tradeoff between system re-

liability and performance goals. The optimal controller attempts

to minimize the cost incurred by the usual LQ regulator action,

and by driving the system state to regions where the likelihood

of undesirable form shifts is reduced.

We have formulated and solved a class of scalar-in-x,

noiseless JLQ problems with x-dynamics that would be 1inear, if
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not for random x-dependent jumping parameters. These problems pos-

sess form transition probabilities that depend upon x in a piece-

wise-constant way. For this class of problems we have developed a

procedure that calculates the optimal expected costs-to-go and con-

trol law& "ff=liae", in advance of system operation. The procedure

determines the optimal controller inductively, backwards in time

(for finite time-horizon problems). At each time the optimal con-

troller is obtained by calculating and comparing a growing number of

quadratic functions. These quadratic functions are computed via

Riccati-like difference equations. We established that the optimal

1 0
control laws are piecewise-linear in x (with x ,x terms) and the

optimal expected costs-to-go are piecewise-quadratic in x (with

x ,x ,x terms). The different controller pieces arise from using

the control to actively hedge. We also identified and examined

several basic qualitative properties of the optimal JLQ controller.

These included hedging-to-a-point, regions of avoidances and the end-

pieces and middlepieces of the expected costs-to-go and control laws.

In chapter 7 we used the combinatoric properties established in

chapter 5 and the results of chapter 6 to construct an algorithm

for the efficient computation of the optimal controller. This al-

gorithm was presented in flowchart form and described in detail. A

very useful topic for future efforts is the development of mecha-

nized schemes for implementing the flowchart steps for general JLQ

problems. This will probably require the use of a high-level sym-

bolic-manipulation computer language,
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The class of JLQ control problems addressed by chapter 5

is extremely rich. The resulting optimal controllers can exhibit

a wide variety of qualitative behaviors. Analytical characteriza-

tions of these JLQ controllers that are sufficiently general to

encompass the entire problem class tend to be uninformative, since

so many diverse behaviors must be simultaneously considered. We

chose, therefore, to focus our attention on problems that lend in-

sight into the kinds of qualitative JLQ controller behaviors that

are appropriate in fault-tolerant control applications. We con-

sidered two archetypical problem classes in detail. In one of these

classes the two goals of high performance and high reliability are

commensurate. In the other class they are at cross purposes. We

examined the parametric dependence of the hedging regions, regions

of avoidance, stability properties, and local minima in the expec-

ted costs-to-go for these controllers. Under certain assumptions

for these problems, the solution algorithm of chapter 7 reduced

to the solution of (increasingly many) sets of difference equa-

tions (as N-k increases). This made these problems amenable to de-

tailed analysis and it let us illustrate some of the controller

properties and qualitative issues that arise from the use of control

to achieve both reliability and performance goals. There are pro-

bably many other special classes of problems within the general

problem class of chapter 5 for which similar detailed study can be

effected. Of course, they need not correspond to fault-tolerant

control applications. The search for other special problem classes

and their study may be a fruitful line of research.

For the general problem of part III, as the time horizon
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of the problem becomes infinite the number of pieces in the opti-

mal controller becomes infinite. That is, the optimal infinite

time-horizon problem cannot be obtained by any finite algorithm.

For the two problem classes examined in chapter 7 we could analyze

the infinite time behavior of the controller and obtain the optimal

steady-state controllers as (N-k).#, since the optimal controllir at

each time can be obtained from the solution of increasingly many dif-

ference equations without making the comparisons and tests in the

solution algorithm that are needed in general. The establishment of

general conditiolis for the existence of steady-state optimal control-

lers for JLQ problems is an open question.

The steady-state solutions that were obtained for the two

problem classes studied in detail here exhibit a structure that sug-

gests a natural approximation to the steady-state optimal controller

(both for these problems and the general class of problems in chapter

5). These approximations correspond to "finite look-ahead" control-

lers which ignore eventualities that might occur beyond some fixed

-, planning time. By ignoring the far future, optimality is lost in

these controllers but the computational burden of determining them

and the complexity (and cost) of their implementation is reduced.

This finite look-ahead controller was developed in section 7.7.

The evaluation of this controller for general JLQ problems and the

derivation of better suboptimal controllers are open questions for

future research.

In part IV (chapters 8,9 and 10) we considered a number

of extensions to the basic solution approach of part III, as

described in section 10.5. Among the myriad "next steps" arising
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from these chapters we suggest that the following may be particularly

fruitful:

1. For the noisy JLPC problem of chapter 9, consider in

detail the approximation of problems involving

input noise densities that are piecewise-constant

and form transition probabilities that are piecewise-

constant in x. At the first time stage the z-conditional

cost will be piecewise-cubic. If we approximate itby a

piecewise-quadratic function then the JLPQ algorithm of

chapter 8 can be applied for one time step. This will

result in a piecewise-quadratic (in x) expected cost.

Therefore at the next time stage back we will again have

a piecewise-cubic z-conditional cost. Thus there is a

nice recursive structure to this approximation idea.

The key question is how to efficiently approximate the

cubiciz pieces by quadratics.

2. For the n-dimensional x problems of section 10.2,

consider special cases that look similar to the

scalar-x-and-u example of section 10.3. In particular,

what kind of hedging behaviors will the optimal

controller demonstrate?
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In this thesis we have considered the control of dynamic

systems subject to abrupt structural changes at random times. This

work was motivated by the need for design techniques that yield fault-

tolerant systems. We have concentrated on the tradeoffs and conflicts

between system reliability and performance goals. Specifically,

we considered the attainment of fault-tolerance through control stra-

tagies rather than by direct redundancy. This is, of course, only

part of the overall fault-tolerant design problem. However the pro-

blem formulations here capture many important issues. We believe

that the problems that are addressed and the results obtained in

this thesis provide an important step in the development of a gen-

eral theory of fault-tolerant control.
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APPENDIX TO PART I

Some Notational Conventions Used

We list here several notational conventions used in this thesis.

1. \ above a cost or cost parameter indicates that it is conditioned

on the value of the form process at the previous time step

2. above a boundary interval ( ) indicates that this is a

conditional quantity parameterized by the z process of

chapter 9.

3. above a cost or cost parameter indicates that this is a

quantity that is parameterized by the z process and is

conditioned on the previous time step 's form process value.

4. fV above a quantity indicates that it is an approximate

version of the true optimal controller's whatever.

5. Cost parameters followed by arguments (t:i) denote the tth

controller piece's parameters, if the system is in form i.

6. superscript t,U indicates the "unconstrained" solution

(control law,cost, etc) to a constrained subproblem

superscript t,L indicates the constrained left-boundary

solution

superscript t R indicates the constrained quantity on the
8

right boundary.
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B. APPENDICES TO PART II

B.1 Proof of Proposition 3,1
2

The cost is quadratic for k=N. Given that Vk(XkJ) = K

for each j at some time k, the optimal Ukl given (xk-lrkl) can

be obtained by minimizing

V k(.'k)x klk-
i i-%-I(rk-)uk- + E +

vk rr )

uk Xk k rk) xkXk-i' k-i
=~~~~~ (riklr~lU~

k[ rk)

subject to the dynamic constraint (3.1).

Using the fact that rk and xk are conditionally independent

(given xk-lrk I ), and that

I M Qk(J)

EjQk(rk) + k(rk) rk_1  = l Pk(rkCl1 j) j
j~l k(j)

(B.1.1) can be minimized by substituting for xk (using (3.1)),

differentiating with respect to Uk 1 and setting the result to

zero, resulting in (3.7). Condition (3.5) guarantees that the inverse

matrix in (3.7) exists for each jeM. Substitution of (3.7) in (3.6)

yields (3.8). It is easily verified that Kl(j) is a symuetric positive
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semi-definite matrix for each j, that the solution given above always

exists if conditions (3.5) one met (and all parameters are finite) and,

by contradiction, it can easily be shown that this optimal solution is

unique. Recursive application of this argument yields the desired

results.

B.2 Establishing Condition (4) of Proposition 3.2

First of all we observe that since in finite expected time the

system will have entered a closed comnunicating class, the transient

forms need not be considered here.

Now suppose that condition (4) is true: for at least one form i

in each closed coamnicating subset of M the nullspaces

1/2,
1(Qi /r(f(L) ={}

Then for any x#O.

x'(Qi+L!RiLi)x # 0

for these forms.

We must show that with condition (4) holding, the optimal steady-

state controller guaranteed by conditions (M)-(3) of the Proposition

must result in

lim E{x-x-k 0
(k-k0)
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From (3.17) we see that

xk+1 (Aj-BjLj)x k =Djx if rk=j

where L. and D. are the steady-state values established by condition
I I

(l)-(3) of the Proposition. Thus if r '=i,
k+l

Xk+lKiXk+l - XkK.xk
.k i j i xk-

where the last equality follows from (3.12).

Hence

ki i Hen X0 .x'(Q +LrR L )x. " (B.2"l)[i +ijic+l Or 0 ir i  r i r.i
i=

Now the left side of (B.2.1) is bounded below by zero, and thus

Xk(Q 0 (B.2.2)

for all nontransient j e M.

A contrapositive argument now shows the sufficiency of condition

(4): Suppose that the steady-state optimal controller yields

liram x

k-k 0 -

hence

lin II kII I 0
(k-k 0)

' but that the expected cost is finite.
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Since the system will return (with probability one) countably

infinitely many times to each form in one of the closed communicating

subsets of M, an infinite cost must be incurred by (B.2.2).

B.3 Proof of Proposition 3.2 conditions (W)-(3) and
Corollary 3.4

For Proposition 3.2: Let k0=0 for simplicity. Note that

000

Cost = E k i [x+lQ(rk+l)xkl + Na(rk)UkjCost k=O 1

expected cost\ expected cost while the
+ form is in a closed

communicating subset
S r E T

k+iQ(r k+l)xk+ + aR(rk)]+ [2+IQ(rk+l) ++R(rk) uj

(If T=0 (i.e.: r0  T) then the first sum is zero).

Conditions (1) and (2) of Proposition 3.2 concern the second

sum above; condition (3) relates to the first one. If i is an

absorbing form, then

expected cost to go 1  t t

from k (Ai-BiFi )  (Qi+FiRiF) (Ai-BiFFi ) x
(xk,rk-i)at k t0

and thus (3.18) follows immediately.
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From above it is clear that

(j+Fi R. F. )

t- 1 +'tBF 'sx' (si)GjX(S) x' (s) (1-pj )I p j (A jB F 'j -

k6T
kyj

for any x' (si ), thus for each j e T:

(0j +F Rj Fj
itt

G. = (1-p.) .p. (A.-B.F.) (A.-B F)
3 t=l 3 + Jj

1 -p..
keT
kdj

as in (3.20). If and only if there exist {G.: jeT} that are positive-
J

definite and finite valved (each element) satisfying these coupled

equations, are the above equalities valid (the positive-definitness

must be a property of the G.'s by (3.5)).3

Similar arguments yields the {Zi} in (3.19).

For Proposition 3.4, note that for absorbing forms i

(A. -B F +t iiF (.-B F.)l

5~ 2 tIiFRFI t2

I* Jx I (aI SI Fi'tEi+ I I I II(Ai-BiFi) 11
t-0
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Now suppose the system is in a transient form i e T.

Let si (i=1,2,...) be the times when the system form changes, with

r(s) =r.
. 1

0

Then the {(Sj-S.); j=0,l,...,} are independent random variables.
j+lj

Given that we are in (x(si), ri=j) at si,

Ex' (.s, )x(s,+) x (s.'=

ri=J

00It t
(i-pj.) p p x (Si )(Ai-BiF i ) (Ai-BiFi) x(s.)

t=l

Let

expetedcost from j e T until T i
x (s)G.xs.) exited, given

1 J x(s.), s.<trjI
, . , ri=j

Clearly.

expected cost '(S )G X(s

x(si)Gjx(si) while in jk E (i+l k i+l

keT 1-Pjj Igiven x(s.)
k~j

00 7

x'(s)(l-pj) p t- (A-B. ) (Q +F' R F )(A.-BjF) t (s.)
t=l

EX(s )G x(s I(
keT 1-p i+1 k
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hence (3.28) implies (3.18). Similarly (3.29) implies (3.19) and (3.30)

implies (3.20). For nonre-enterable transient forms, the sum ofG

terms (Z. e T, Z~j) in (3.20) is zero; thus (3.31) implies (3.20) trivially.
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.8.4 Proof of Proposition 4.1 (Sketch)

Let us first consider the minimum mean square (minimum variance)

filtering problem for (4.1) - (4.2). This is just the Kalman-Buccy

filter for discrete-time systems since we have perfect observations

of the form process rk (see, for example, ] pp. 528-531); (4.15) -

(4.19) yield the optimal filter. Note that the extrapolation equations

(4.15) - (4.16) use the value of rkl on the right side. The update

and Kalman gain equations (4.17) - (4.19) use the r value (since Y

depends on rk and x)

The Gaussianity of x and the noise sequences insure the separation
0

result; (4.6) - (4.12) are the same as in the deterministic JLQ

problem (see appendix C and chapter 5). The equation (4.23) for

Gk(j) includes a factor

m Kk+l
Spj,i) tr { E + -(i) }

kl LQ(i

that reflects the cost of the input noise uncertainty. It is the

same as in the standard LQG problem, except for the form dependence.

The last two tarow in the cost V (xo,r O ) in (4.22) are due to
k 0

0
the filter error (as in the LQG problem). or0
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C. APPENDICES TO PAR'T T

C.1 One-Step Solution Equations (for Proposition 5.1)

For t=l2'''+ let

9 )i be the index of ji( ) valid in (5.3) when
t J

xk+k e 
k'++t)

be the index of the piece of Vk+l(xk+ ,rk+l=i)
tt

valid when xk~ e

as in (5.27) - (5.28).

Define the conditional cost parameters

M

ii t k+ t +

M

^jI(c12H l (t) = (H ) ( ( i) + i]

G (t) =(G ( t;i) + P(i)] (C.1.3)
k+1 t~ k4-1 t

where

bR(j) 
2Rjt) 2

2R(j) 2R(j) k+

03(t) =yj (t) (1 + + H t) (c.1.5)
k k+1 k (.15

R(j) 2R(j)
J

k+l
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Note that

Xk+l e ~()2
E Ik+ (Xk+l rk+l) xk+l 1  (t)

rk= +

Xk+l 'k+l" (C/1.6)
+

G +l (t)

Then the candidate costs-to-go in (5.29) and corresponding optimal control

laws in (5.30), and the optimal Xk+1 e + t) values achieved by these

controls are:

Vki (x.klj) xk= + xk H (t-1) + G (t-l;t) (C.1.7)k k

t,L ) t
tL ¥1 (t-l) (C.1.9)

for t = 2,3,..., k+. if

a(j) x < eJ( ,

V'(x k ,j) 2 L (t) + xk HJ(t) + GJ(t) (C.1.10)

Uk (xkj) .-L (tk

t U j) kL~ x.k+ F3(t) (..l

(k+(ixk') + [a(j) -B(j) L (t)]xk + b(j) F (t) (C.1.12)

for t - 1,2,... if
k+ 1

J(t) < a (j) xk< (t)
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'~~~C 1. 13) -

i

t IR (k, j) -2 + x (t) + G_ (tit)

t, (j) X + -i (.1. 14)

tS (xk,j) - (t) (C1.15)Xk~l Xkj 7k+l~t

for t = 1,2,.., 1 i

(t) < a(j) xk 0

The quantities on the right-hand side of (C.1.10) - (C.1.12) are computed

* by1

K (t) = K T(j) (all jY
2T
2 a(j) R(j) W +(t)

R(j) + 2 (j) K+l(t) 
(C.1.16)

J (t) = T(j) (all)HN T

(c 1..17)
a(j) R(j) HJ+1(t)

Hk3(t) -- k+
R(j) + b2 (j) K+l(t)

J = GT(J) (Al jGN

b2  2j
4j(j) b()]

3 3 k+l (C.1.18)
Gk W Gk+l4R(j) 2(j) +l(t)]

and

Li a(j) b(j) K +lW -119

W(t) = b2  "J (C. I. 19)
k R(j) + b2 (j) K +(t)
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- -b(j) Hk+l (t)
k 2t A]j (C.1. 20)

2 R(j) + b2 (j) ,.+ (t) I

The quantities on the righthand sides (C.1.7) - (C.1.9) and (C.l.13)-

are computed by
(C.1.15)

-j a2 (j) R(j)
Kk 2b (j) (C.I.21)

-2a(j) R(j) YJ Ct)
(t) 2 (C.1.22)

b (j )

fort= 1,..., 'k+l -1

G (St t) S)) GI t)kk+l Yk+1lS H k+l(

(C.1.23)
k ,+(t) + b2(j)+.i -

b (j)

defined for

S = t for t= ,..., -k-- 1

3 nd S = t-i for t = 2,...,

and

= a(j)/b(j) (C.1.24)
k F (t) Y (t)b~j)(C.1.25)'

*~~~ fots~**l ~for t=i,., i 1

Regarding the notation used here, :

denotes an actively-constrained quantity

A denotes a conditional quantity
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I
It is straightforward to verify that (5.6) and (ii) of Proposition 5.1

imply that

(t)2 Gk(t) 2Kik (C.1.26)

> !0 t--1,... *pJ+-

k+1

'Hk3(t-)/2 G (t-, t)

Ct-i) (C.1.27)

G~(-lt),~> 0 t=2,...,'k+
k kl

C t) kjt/

H(Gt)/2 HJ!t)/2) t-,..., (c.(.t.)8

k k

for each j e M , and thus (2) of Proposition 5.1 holds.

The values of mk(j), {c(t):t=l,...,'nk(j) -1},and Kk(t:j), Hk(t:j) ,

Gk(t:j), Lk(t:j) and F kt:j) are assigned, for each j e M, by performing
k k~t

the minimization indicated in (5.37). The derivation of (C.1.7) - (C.1.25)

is done in the next section.
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C.2 Derivation of (C.1.7) -(C.1,25).

From (5.15), (C-1-1) -(C.1.3) we have that

2U k R(j)

vkfx.kLrkjitl min 2klN~ t + H 1  Clt) xk+l (C.2.1)
"k

S.t.

Xk+l e k+1 (tt)A

k+3.

From (5.1) we have that

Xk~ -~j)Xk(b)j) 0 0). (C.2.2)
k b(j)

Thus (C.2.1) becomes

2 "'R(j)

2 2

a(j) R(j)

kt) (t)+
b (j)J

To minimize (C.2.3), differentiate with respect to x kland set to zero.

We find that the optimal x k+l is

=k~ 2a(j) R(j) xk- b Hj k+1 t C24
2[R(j) + b 2 (j) ( t))
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(if this x is, in fact, in (t)
ik+l his

Also,

vk ,rk=It] R(j)
22 +k+l(t)] > 02k b2 (j (C.2.5)

)xk b (j)

Now Xk+ A+l(t) if and only if

(+lCt-1) tR(j) + b2  K k+lCt +.Ct) (RCj) + bCj) K +Ct]

+ < a(j) xk <

2 Hk+l (t)2 k+l(t)

R(j) R(j)
(C.2.6)

The left and right sides of (C.2.6) are defined to be )(t) and 03J(t)

k k

. respectively,as in (C.1.4) - (C.1.5).

With the definitionsof (C.1.10) - (C.1.12) holding, the substitution

of (C.2.4) into (C.2.3) yields (C.1.16) - (C.1.18) and the substitution

of (C.2.4) into (C.2.2) yields (C.1.19) - (C.l.20).

Now if

a(j)xk <k (t) I

(C.2.5) implies that the best we can do is to drive Xk+i to Yj+ (t-l) the

left boundary of 9j Thus from (C.2.2)
k+l
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(L -a j) = - (C.2.7)
uk (k+l j b (j)

which yields (C.1.8) with (C.1.21) - (C.1.22).

Substituting Xk+ =7 +1 (t-1) into (C.2.3) yields (C.1.8) with (C.1.21) -

(C.1.23); here S - t-1 and t=2,..., Similarlykc+l

a(j) xk > (t)

-case yields (C.1.13) (C..15); here S = t and t=l,..., in (C.1.18).

If b(j) = 0 then the optimal control is

uk(xk,rk=J) =0

with

Xk+l = a(j) xk

and cost

2 ^ ()j 2 + a j

Vk(XkrkiJ) = 2 (j) K+l(t) Xk + a(j) H,%+l(t) xk

Aj+ G t)
k+l

where the index t is determined by which region +l(t) the Xk+l

value is in (for each xk value).
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C.3 Prqqf of Proposition 5.2

To prove this proposition we must first establish the following

relationships between j t, (t) adteso sofV (K r j)

at the points rk~ (t): t =1. j
k+1 'k+1

Lenuma C.3.1: The following relationships hold:

1. > (Z if and only if

k+l_ _

3xk+I 3xk+lI (C. 3.1)

xk+l=( y kl(t-l)]+ 'k(2'

______ Yj (-~

2. Z-1)- k+l
b (j)

2. G(t) > e ,)if an& )nlt if
kk

'Ok___ -~ - (C-3.2)

- xk+l

"k+l k+t' k+l 1-C ZI-.

2R(j) J()

b (i k+l -kI-]

3. E&j(t) > 6 MZ if and only if (C.3.3)
k k

a ax

3xk+l k+i].

my (t)Y x =fy) (-J+
Xk+l= k+l k+l k+l

2R j k- -]. kj (l )
b 2(j) lkl
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Proof of Lemma C.3.1

Note from (C.6 that

A.1
2A k+l W2%. _.

'xk+l
Xk+ 1. = X

and thus by (C.1.4),

b2 (j) L+i(t)

63(t) Y3 (t-l) El + (t)~ +
k k+l R (j) + ] 2R(j)

k+l + R(j) ~l~ += (t-l)]'k+! I •

Hence (1) of the lemma follows for any t,i e (2,..., The

other two relationships are proved in the same manner (using (C.l.5)

for t)) • 0

PROoF OFPROPOSITION 5.2,, CON TkNUE.D
Suppose that (xk+;r =j) is continuous at y +l(t). Then clearly

Vk+l X k ' k~

tR t+,L (C.34)
Vk' x.ki) Vk y)U

Since we are driving to the same xk 1 value in each, with the same

cost. Hence from (C.1.23),

k (t,t) G k (tlt+l)
,k+,+, rkJ

Since (by Proposition 5.1) (C.3.5)
3Xk+l

is nonincreasing at y+l (t), we have
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Xk+l ()

x 7-
-k++ k+l

V+l Cx
A k+l [k+lt]

ktl k <

and hence, by lemma C.3.1, k t k

Now (C.3.4), (C.3.7) are sufficient to uarantee that neither VkR(Xk, j )

t,L.nor Vi '(xk,j) can be optimal for any xk since

tR >tU
Vk (Xk' j )  Vk (J)

t+l t+lU

This situation is illustrated in Figure C.3.1 ( for a(j) 0).

Thus for each y+ (t) with Vk+ l( +iIrk= j) continuous,
k+l V~

v '  j  Vk (xkt,)I Vk C j)

for each x (C.3.8)

Suppose instead that

V ([y (t)]j) < (y t j) (C.3.9)
Vk+l k+l 1 j< k+J k+lt)
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I t+1,L -

V (X k,J) k UNIJ

J Xk

Figure C.3.1: Adjacent constrained and Unconstrained Costs when

the conditional expected cost is continuous at their coxmmon
boundary.
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That is, V Xk+, j) has a discontinuous increase at Y (t).
k+l

This can happen only if k+(t) is a form transition probability

discontinuity vji() (for i eCj,x {l, 7i-l}).

Then clearly

tR tt~lL

So in this case Vt+lL (,j) cannot be optimal for any x. However,

vR (xkj) may be. Similarly, if

A +ik+l > k+l[Yk+l ]t + j)

(which implies that yJ (t) is a form transition probability discontinuity)k+l

then

k (xkl) k (xk'j

hence VkR (x,j) cannot be optimal. Thus we need consider only the

candidate costs-to-go listed in the statement of Proposition 5.2.
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C.4 Proof of PropQsition 5.3

tJ vt,R vt,L1. Differentiation of V V and Vt ' L
(xk .) , ) (xkJ) and

( xk,j
k K J

comparisontf wi h , JJ)' t,R ,
comparison with NK uk (xk j ) and

(k,j) (for appropriate values of t) pields (1) directly

2. At joining points where kxk

xk
xk=

exists, uk(xk,rk=j) and xk+l(xk,rk=j) are clearly continuous

from (1),

3. At a joining point xk = 6 where the slope of Vk(xrkj)

decreases.

+ -b(j) aVk( xkij 3V k xk )uk( 6 ) - Uk( = 2a(j)R(j) x k + xk

but

aVk(xk'rkJ) < Vk (x'rk=J)
k = )+

we have

b(j) + -

a(j) > 0 = k ) > u("

ba(j) +a (j) < 0 uk (6+ < uk(a

hence 3(i), and from (5.48),
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+ - Vk(.+' t i) Vk( 1
a(j) - C] 2a(j)R(j) 3xk  axkIk
-aVkC-1j) vk( j > 0
2a(j) R (j) axk axk

hence 3(ii).

4. From 3(ii) we have that the mapping

Xk1- 4  xkl (xk,rkj)

increases discontinously at joining points where

Vk(xk,rk=j) is not differentiable, and from (2), the mapping

is continuous at other joining points.

Now between joining points, if the optimal cost corresponds

to hedging to a point then clearly the mapping is constant.

If the optimal cost does not correspond to hedging to a point,

then in such a region

Vk(xk,rk-J) = t (

X.K) xk.N(t) + k ''

for some t E{l,..., %c 1l (from C1.10). Thus from (5.48)

b2  % aVk(xkrk-1)

Xk+l k'k k 2a(j)R(j) axk

hence
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axk+3. a Vk - b2 
__________

xk 2a(j)R(j) (3xk)z

2.(j
a(j 2a(j)R(j) 2 K (t)

R(j) + b 2 (j) K+l(t) by (C.I.16)

a a(j) R(j)>0= > 02 ^j
L (j) + b2 (j) K +l(t)

if a(j) > 0 (and 3xk < 0 if a(j) < 0

Thus we have 4(i), (ii)

Clearly from (5.48) we cannot have regions of avoidance except when

rj) is discontinuous, and from 4(i), 3(ii) we must have

a region of xk+i values that are not attainable using the optimal

control associated with each discontinuous joining point.

5. Fact (5) follows directly from the monotonicity of the mapping

k"-> k+l (x'rkmj)

in 4(i), since each candidate cost corresponds to driving Xk+l into

a different region of values; if a certain candidate cost is optimal

over two disconnected intervals then the monotonicity of the mapping

is violated.
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C.5 Proof of Proposition 6.1

Condition (6.1) - (6.4) quarantees that +l(t) and hence

(t) are nonzero for all k = N, N-I,...,O (see appendix C.2). As

1xkI grows large, the candidate costs-to-go V k (x,), v k L

Vt ' R (xkj) are dominated by their-x terms.

For constrained costs (VkU (xk , j) or Vk ' (xk,j)) this term is

2 "
xk 3 (all k)

and for unconstrained costs VkVk (',i i

2 (
x k

For any t =,...,pk+l

Kt)< .j(.51

To see this, note from (C.1.16), (C.1.21) that

2=a 2 (j) R (j)

2
b2(j)

2 A]

a (j) R(j) M+l(i)
R (j) + b2(j) Kj+1 M)

Thus for xk large enough, the optimal expected cost-to-go

Vk(xkrk-j) must be one of the unconstrained ones. But for small
i, < +i,( j>is the only unconstrained

(large) enough, Vk (xkJ) V % 'xk' in

- cost that is eligible, and (6.6) - (6.24) follow directly from
Appendix C.l.
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C.6 Proof of Proposition 6.3, part (iv).

We first verify (6.48). Each form j is assumed to be stabilizable.

Thus by Proposition 6.2 the steady-state endpieces of the optimal expected

costs-to-go in each form are finite (for finite x). The closed-loop

optimal gain in the left endpiece of Vk(xk,j) thus approaches the following

limiting value as (N-k) -

a(j) -b(j) LL e (j) by (6.39)00

2
a(j) j (j) e ( j ) by (6.40)

-~ aj a(j) R(j)

b (j) KLe (j)
a(j) 1 - b2 by (6.37)

R(j) + b (j) (j)

- a(j) 2

R(j)

Now for each j this limiting value of the closed loop optimal gain

magnitude must be less than one (i.e. stable) since the steady-state

endpiece of the cost function is finite. That is, we have (6.48):

0 < a(j) < 1+ R(j) K (j)

In particular there exists a positive integer z < o such that for

each JeM we have

1 + a¢() ]< 1 (c.6.1
1 + <) e

+R ^Lj()

for all (N-k) > Z.
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Now by (iv), there exists a form 2 that is accessible from j

which has an x-dependent form transition probability and can be

repeatedly re-entered. Thus there is some finite number 2 such

pthat

Pr{r injr 9,12>0 Vp>T
k+P k

and, by (C.6.1), the closed-loop optimal control driving (xk'rk=P)

to (x k r =Z) is greater than one for any form sequence from
k+P k+P -

rk ktor+P

Thus

= x(1 x > (j)
Xk+p k+p k

hence

3k(1)' < (1)
k k+P

Similarly,

k( )-1 ) > p £-

Hence

kIsp I <I s~1

Since Z can be repeatedly re-entered

Is! 1 4 0 as (N-k) -

consequently since k is accessible from j, IS k as well. 0
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C.7 Proof of Proposition 6.5

Parts (1) and (2) of Proposition 6.5 are obvious. Let us

consider part(3), with defined, as in the Proposition, to be the

smallest positive form transition probability discontinuity location,

for all p(j,i) where ie C. By Proposition 6.4, for x in the right
J.

middlepiece of Vk(xrk=J) -- that is, for

0 < (C.7.1)

we have the optimal control law (6.57) yielding the optimal Xk+l value

Xk+l = (a(j) -b(j) L (D)] k

2 RM kr b -(j) +  (j) k

2 a(j)

1+Kk~ j (C.7.2)
R(j)

Now by definition, e (0, k implies that x+l e [0, 6i' ' k+l 1

for all i e C as well as Xk+l e [0, v.i (t)] for all i e C. and

Thus, in particular we have

0< xk+l<Sj;

hence (6.60) and if jeCi then we have 0 < x 3 k hence (6.61).
- k+l- k+l

A symmetric argument proves (4).
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C. 8 Proof of Proposition 6.7

We prove the proposition by induction; (6.72)-(6.76) are trivially

true for k = N by (6.79). Now suppose (6.72) - (6.78) hold at some time

k + 1. That is, for all i

2 LB 2 U3
Xk+ 1  (i ) < Vk+1 (xk+l rk+l=l) - xk+ K5+l (i)

* Then for any j e M

K LB(i) Q

Kk 1(. Xk+l

S(ji xk+l) j- p(ji;xk+l) +ie_ AMi

L Vk+l (xk+l rk+l~i )

2
k+l iem P(Ji;Xk+l) +

LB rim
From the definitions of K+l ( j ) and Kl1 (j) in (6.77) - (6.78)

we thus have

2I 2 LB Xk+ 1~ Q(i)

2 LB <1233xk+l + ) < pjli:Xk+l) + k+l
ieM

Vk+l (xk+l ,rk+l = i)
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Now define

VLB~xj min 2 R(j) + x +.^L j

V (x~kj) min 'uk R(j) + x k~l :+l()

Recall that____

2

Vk(xk r kj) mi~n ukR(j) + Fap(j~i:x kl +

uk iCM 0

Vk+l k+1 k417'

Thus

VLB r )rUB(xr ) C81
V (xk rk=) VJk(xk rJ-j) k V (xlk=i (C8)

Solving for each of the costs in (C.8.1) we directly obtain (6.73) - (6.76).

Thus (C.72) -(C.78) holds for k, which completes the proof.

60
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C. 9 Proof of Proposition 6.8

From (6.80), if we defin~e K.k(i) (for each j8e4N by the recursive

equation

K.k(j) =a 2 (j) R (j) [ ~ 1  ) + Q(i)))]
ieCi

R + b 2  p.)[z . (K(i) + Q(i))1
(i) j)i k+lJ

where

KN (j) =K~r(j)

then at each time k

Kj K (j) < K (j)

(in all jeM). Similarly with the p..i definition of (6.83) if we

define Kkj by

2KRa() + (j) [ p IK ( + M~)]

i8 C

(C.9.2)

KTi -K(j)

then at each time k

A direct application of Proposition 3.2 to (C.9.1) yields (6.82), and

to (C.9.2) yields (6.85). Hence (6.86) -(6.87).0
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C.10 Proof of Proposition 6.11

We have already shown that for KN(2 ) < K(i) K(3) the expected

cost-to-go has a single minimum. For the second case of

AN 2  
AA

K 2)> K(3)

VNl(xN_l,r 1=) can have local minima if and only if

1,R
min V-I < N-1 (2)
XN-l

rmin V3 L > N1(3)
XN- 1

or equivalently, if

1,R
V_-I > 0

xN-i XNi 6 N-1(2)

3,L
N-l < 0

;Xl X~ -(3)xN-1  'N-1 = N_-1

(since the other candidate cost functions VI '- V2 '- V3'l allN4-1 ' N-i , VN-1 l

1,R _3,Lare minimal at zero). The minimizing xN_1 for Vi_ 1 and V are

clearly given by (6.162) with values (6.163). From appendix C.1

we have that

1,R%-1 2a(l) R(1)
2 (a(l) x-i +aL). (C.10.1)

KN-I b (1)
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Substitution of N- -2 in (C,10O1) gjiVes

2 a(1) R (1) (a(l) SNi(2) + at) 0
b 2(1)N-

which yields (6.161) directly.
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C.11 Proof of Fact 7.2

The evolution of Kyl:2) as N-k increases is specified by (6.96):
2(2) R(2)[ +i(1:2) + Q(2)]

K (1:2) 2R(2) + b (2)[ (+i(1: 2 ) + Q(2)] (C.ll.l)

Claim: K.l(1:2) > K (1:2) if and only if K_ 2 (1: 2 ) > K _(1:2 ).

To see this we use (C.ll.1) as follows:

(1:2) > K_ 1 (1:2)

2 2a (2) R(2) (Kk-1 (l:2) + Q(2)] a (2) R( 2 ) [Kk(l: 2 ) + Q(2)]

+ 2  2 () R2
R(2) b(2) [Kk- 1 (l:2) Q(2)] R(2) + b2(2)[ K(1:2) + Q(2)]

R(2)
u [K k1_ (1: 2 ) + Q(2)] + 2

b (2) [Kk(1: 2) + Q( 2 )j

Rn(2) ]

> [K(1:2) + Q(2)] + 
]b2(2)[ [_(1:2) + Q(2)]

as claimed. Consequently since condition (7.12) guarantees that

.% i(1:2) > KN(1:2) = KT(2) we have (1) of Fact 7.2 by induction.

From the recursive equation for K.K (1) (i.e. (6.105)),similar

algebraic manipulations to those above show that if K (L) > KLM(1)

for some specified k then since K(1:2) > K+I(1:2) by (1) we
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I"I

I"I

have K(l) > 'k1(1), hence Kic-i(1) ;>K (1). Condition (7. 13)

with i 1 guarantees that K.i(i) > KLM(I, hence (2) of Fact 7.2

follows by induction. Similarly we obtain (3) of fact 7.2 from (6.104)

0
and (7.23) with i = 2.
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This fact is proved by induction in each of the two cases. Recall

the equations for the endpiece, middlepiece, upper bound and lower

bound parameters:

2 Le
a (1) R(1) +i(i)

K e(1) - 2(1) 2 Le
R(1) + b (1) Y + (I) (C.12.1)

-Le Le+ U) ( (1 2 + Q 2 )
k i ) = (3. -1) + Q(1)) 2 k+i1

Le Re (.22Ke(1) KN (1) = KT(l) (C.12.2)

and
a (1) R(l) K 1 (1)

K k (1) - +M( 2 
) LM (C.12.3)

R(l) + b2(1) K K+(1)

. 1 () ,,(1 = Wi) (4+i(i) + Q(l) + w1 (K + 1 :2) + Q(2)) (C.12.4)

K~1(l =KI(1)

and

a2 (1) R(1) Kk+1(1) (C.12.5)
K U(1) - 2 UB

R (1) + b (1) K (1)
-. 2.5

....... .-.- -.



S1 °i[UB tB

+l (1) = tax. 1  i (2. ) IK'+l(i) + Q(i) C.12.6)
t=l, ., ~ i=1, 2

k+l

KU(1) = (I1)

and
2 -'LB

a (1) R(1) -L+(l)

R(1) + b (1) K +l (1) (C.12.7)

K (1 mi rLB+,()+ i (C.12.8)t~,..'k+l i il,2

LB

LB UBAt all times k, Kk (2) -- (2) = Kk(1: 2 ), where Kk(1: 2 ) is given by

(6.96) -(C.l1.1).

Suppose w > i as in (1) of Fact 7.3.y Assume that

Le U
K (1) = % 1 (1) at some time k+l. Then by Facts 7.1 and 7.2,

+l(1) in (C.12.6) becomes

-UrB riB
j+l(1) = (1- W2 ).+(l) + Q(1)) + W2 (Kk+l(1-

2 ) + Q(2))

Le= Kk+i(l) by (C.12.2)

__ Hence by (C.12.1), (C.12.5) we have that
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Le tIE 1e UB
Kk],l)- . (1j) implies K.K (1) K 1

Attm , Le UBLe t

At time K KN, K hence ~ I)- -l1) at all times k,

by induction.

Analogous arguments show that (1) -- (I) at all times k

(when w2 > W ). The two claims in part (2) of Fact 7.3 (where w > W2)

are proved in the same manner: by comparison of (C.12.7) - (C.12.8)

and induction. 
1
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C.13 Commensurate Goals Problem Derivation - Part I

We are considering the following problem class:

min E R (r) + Qu+ 1(r)2 + 2 K+(r)

" N-1 Tku

where

(C.13.2)
x = a(rK) x K + b(rK,) a K

rK e {1,2}

p(l,2:x) = if IxI < a 0 < a
(C.13.3)

0 < if lxi >< a

6~p(1,i:x) I - p(1,2:x) P(2,1) 0 p(2,2) I 1

where
o < I%(l) < KT(2)

o < a(l) <a(2)
(C.13.4)

0 < Wl W <~

0 <c, R(l), R(2)

b(l) , b(2) #0

We assume

a 2 (1) b2 (1)/R(l) (C.13.5)
2 - b2

a (2) b (2)/R(2)

hence
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/ 2(2

+ >X ( >= '.'
t ..-. X k

l'k xk,rk--2 (1)/

by Fact 7.1.

We assume that 0 < KT(2)

2 r 2
2 _1 , 2[ R(2) [a (2) - 1 R(2)[a (2) 4- 2 2

b< (2) +b (2) a (2) Q(2)(2)R(2)Q(2)

2
2b (2).

(C.13.6)

0 < KT(1)
and -T

2 2i< -{R(l)(l-a 2lCl ))+b 2(l)[Q(1)+w (Kr(2) +Q (2)Q()}

7-7 2 2 ()[ () w (Y2+i {R(1) (1-a (1) (1-4).))+b (1) [Q (1)+wi(KT (2)+Q (2)-Q (1))]}
22

+ 4a (i)()i (i-wLtQ(1)+w.(K ( 2) +Q(2)--Q(1))] J2

2b 2(1) (1 - wi) (C.13.7)
for i = 1,2

hence, by Fact 7.2, (1), K (1) and Kk(1:2) are monotone increasing

sequences as (N - k) increases. We also assume that

w2 > W (C.13.8)

* hence, by Fact 7.3 we have that
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Le VRe ()aegvnb
*the endpieces V k (1) Vk1 r gvnb

k k
ULB

tsame function ofx as the uper bound V ( )

k k

In addition we assume that

a(l) < 1 + b (1) +

R(l)I ++

2 (C.13.9)
b (1 KN(2)

hence we have "situation (1)" as in (7.22) and figures 7.11(a), 7.14(d).

In section 6.6 we obtained the complete solution for this problem at time

K=N-1: (6.112) -(6.118),(6.121) -(6.142) (TEhat is, fact 6.9). We

OP can show that

K N 1 (3:1) K< - (1j:1) ( ~ 5 :1) K N~-1(2:1) K= - 41

(C. 13-.10)

(as in figure 7.14(c)) by the following lemma:

Lemma C.13.1:2

2 2
For finite K > K > 0, R > 0 and a ,b we have the following:

1 2

(1) > K if and only if a2 c 2 RK,>aRK 2
K1 22 2 (C.13.11) P

R+b K R +b K 2
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2 2a R a R K
(2) For any finite K, 2 > R K

b R b K (C.13.12)

Proof: For (1), note the following equivalences:

2 2
a R K a R K1> 2

2 2R +pb K R +b bK

1 2 2

22

a2 R2 K1  a K 2  KR > K2

Now note that

I -,<. ~ 2 2/lr 2 irb 2  --b1 2 1

aR K > R , bK)> aR
lin2 1 . ~ 2

Pi b k-co +b b

hence (2) follows from (1).

Since in case 1 we have

% (1) B K,(3) > Kc2),

(1) of Lemma C.13.1 and (6.128), (6.136) yield

K (1¢:1), (:) > 5 13: 1)
(C.13.13)

and (2) of Lemma C.13.1 yields

( I2: 1) ( -l4:1) > 5-(1:1)
(C.13.14)
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Since V~( 2:1) V 2,L and V (3:1) = 2,U we have]
V- i N-1 VN-1

2
XNl KN_1(2 :1) (C.13.5

x H (2:1) 2V (3)

Vl (2: 1) N-i 'N-i > ~ ~ (3 : 1) (3:- )

G N1C2 :1)

except for equality at XN-I = N-1 (2)

Let us now consider time X~ N-2. Among the eligible candidate

cost-to-go functions for V (x ,r =1) are:
VN-2 N-2' N-2=

t 2 (C.13.16)
N -2 (xN-2I) =XN-2 -N-2 (t) + xN-2 H C2t) + GN-Ct)

for

N-2 W0 N-2)
.XN-2 .

a(l) a (1)

where (see appendix C.1) we have

a 2(1) R(1) W1 1 t

R(1) 1) Kl~t)(C.13.17)

H -1 N-2 (3 N-2 (4 N-2- HN-2(7 0

a (1) R 1 L()=HC)= L() 0

(2)~ ) ()El() =- (6) (C.13.18)
R (1) + b (1) K l( 2 )

Ithe sense of section 7.2
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GN- 1 GN(3) =G N2(4) G N2(5) rG N2(7) ~o

A 2 AGw (2) =Gl (2) -b
2 (1) [H~1 (2)]2N2 (C1.9

-= G (6)
4(R (1) -b 2 (1) (2)] N-

with

2~t 2 +lw2  t=1,2,3

= ( 1 ~i [~1(1:I2L

KN1(t) =(1-w) [ +..t-:~ +2 + ,,

(C. 13 .20)

H Nl(t) -0 t=1,3,4,5,7

AN 1 2 1 w H (1-W 2 )2a() R(1)ct
I~i( ) - 1~ 2) -,i(2:1) = 2  (1 ~( 6)

(C. 13.21)

G l(t) -0 t-1,3,4,5,7

2 2
N- 2 (1-W 2 GN-l( 2 :l) -W - 2 )a (R() + b) KN (2))

A~ b(1)
G G~( 6)
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and b2 (C.13.22)

N-2 = Y1Nl(t-l) I1 + + HN-(t)LR (1) 2R ( -i

0N2 t) = Ni(t) + K (t) + b2 (1) HNi (t)C13.23)

R(1) 2R(l)

t=i,2, .. . ,6

where

7N- N( i) (6N_() = - YN_(5) = 6N_1(3)

YN_ 2 = ( N-1 (2) YN-i( = YN-I(6) = N-1 (4)

Given (C.13.i0), i < W2 and <Ni <

we have

(C.13.24)

> N-i) =N-1(71 > KN1 > SN- 4

by Lema C.13.1, and thus

V4,U 3,U U, 7,U _U (C.13.25)

N-2 < VN-2 - N-2 VN-2 N-2 at all N 2

By (C.13.15) we also have

v2,U 3 9N-2 3 (C.13.26)

VN-2 > except at equality at XN-2 a(l)

• " 6,U _5,UVN-2 > VN-2 except equality 6N2 (6)

at x N-2 a (I)
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Note that (C.13.24) -(C.13.26) are the same as (7.26) -(7.28).

t, UIn addition to the V 2  (t=l,...,7), the other two eligible

candidate functions for VN'x 2 r 1) are

4,L N-2'~N-2 N-2 KN 2 
2 N-23Hz 3  G 2

3 4

v4 ,R 2x~ A.,l)=
N-2 -2l N-2 -N2 + 2 1N-2 %- 2 (

4 ) + G -2)(4)

* where(1

K a 2(1.) RMl/b 2(1)(C1.6

N-2

H=3 -2aJ.) R(l) O/b 2 () (C.13.27)
N-2

G (3,4) = ct f (4) + 2 Gl() 4  (C.13.29)
GN-2 YN-I b 2(1) GN-(4)

The relationships (7.29) -(7.30) are by definition, and Lemma C.13.1

yields

When the first situation for VN. 2 (XN-2 rN-2 -1) occurs (as shown in

figure 7.16) we have

~IS (1)From Appendix C.l.

825



VN- 2 (id) = 'N-2 KN2 (i:l) N-2 HN- 2 (i) +N-2

for N2(i-1) < X < N_(i) (C.13.31)
N-2 - N-2 < N-2

with N=-,2,2.,,jN (1)

where

(1)= 9. (C.13.32)

Here

%_2 (i:1) -- K_ 2 (i) i=1,2,3

KN 2  ) =N-2=N)

KN-2 (5:1) = %- 2 (
4)

'-N-2 (i:1) ,- 2 (i-2) i-7,8,9

H-2(i:l ) = G N2(i:l) = 0 i=1,3,5,7,9 (C.13.33)

%-2(2:1) -= HN2 (2) -H N2(6) =-H N2(8:1)

GN_2 (2 :1) G N-2(2) GN 2 (6) = GN2 (8:1)

N 2 (
4 :1) H- 2 (3 ) - -N- 2 (

4 ) - -N- 2 (6:1)

GN_2(4:1 )  G N-2(3,4) -GN2 (4,4) = GN2 (6:1)

with

826
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N- ( .N-2 (. .+0

E) (2) N2(3) -0N 2 (5) -N 2 (6)
6 (2)=- - =-(S (7)N-2 (2 .. N-2(7

a (1) a(1) a(1) a(1)

@N2(4) -N2(4)
N-2 N-2___

(4) (5) (C. 13.34)
a(1) a(1)

and
• N-2 (3) = -N 2(6)

N-2N-

N-2 (1) = N-2 (8)

Joining point N-2(1) occurs at the leftmost intersection of the functions

1,U a V . This is the least X_ 2 such that
VN-2 and N-2

2,U ,U = 2 (2) (1)] + x H (2) + G (2) 0.
VN-2 - VN-2 XN-2 [KN-2 N-2 N-2 N-2 N-2

From figure 7.15 we see that this intersection exists for all parameter

values consistent with the assumptions of this section.

Using the quadratic formula we find this point to be

N-i(2) + 2 + (1) + (1 +

a (1) 'R() R(1)

(C.13.35)

where
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r 2-,R(1) + b (1) KN( 2 )

R (1) +b2 (1) 'M, (2)] -a2 (1) 2(1) (i-w 2 )

A1  FR (1) + b2 (1) KN(1)l [Rl)+ 2(1) b_l)j R(1) + b2 (1) 

R (1 ()K (2)

1 2(1 + hN( El + (1i-W 2 )Q(l) + W2 (Q(2) + KN_1(1:2))11R(1-- - 2)J i1 + (

b 2 (i2

R(1) KN( 2 ) (1 W2) a (1)

2 2(1b,1 b2 (1)
Ni + R R(1) KN-1I1

(C.13. 36)

Joining point 6N2(3) occurs at the leftmost intersection of the functions
-N-2

3,U 4,L
V and V4 , L  Using the quadratic formula, we find this to be. -[ N-2

6R(3) . . (1+b2(l) N R(1) + b2 (1) ( _I( 4 )

1---2 (3) a(l) R(l) 1 2R(l) + b (1) _i(3)

(C.13.38)

3,U 4,L
Since (4) < (3), this intersection of VN_ 2 and VN_ 2  always

exists (for the problems of this Section). This completes the derivation

of VN_ 2x rN_ 2 I) for the situation that is shown in figure 7.16.

Next let us consider the situation shown in figure .17. Here

(C.13.31) holds with

'M2 ()= 7 (C.13.39

and
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K_ 2 (i:i) = K_2(i) i=1,2,'6,7

%- 2 (
4 -1) = KM2 (4) i-6, 7

-M2  & K-2 %-K..2 (5)

%-2i1) G N-2(i:l) = i i=1,4,7 (C.13.40)

H (2:1) = H (2) = - (6) = -H (6:1)

N-2 N-2 %-~2  N-2

G N2(2:1) G N-2(2) = GN-2(6) G N-2(6:1)

H-2 (3:1) -HN2 (3) =-H N2(4) -H N2(5:1)

G_(3:1) G (3,4) G GN 2 ( 4 , 4 ) - G_ 2 (5:1)
GN-2 N-2N-N2

with

N23 N-2 (4) -0N-2 (4)a N-2 - 6N-2 (4) (C.13.41)

a(1) - a(1)N-

and

6 N2(1) -6 AW _=N-2 N-- (C.13.42)

Jointing point _2(1) occurs at the leftmost intersection of the
N-2u

function VI1' 2  and V2 ,
u  which we have already computbd inN- N-2'

(C. 13.35).

Joining point N_(2) is the leftmost intersection (1) of N n-2,U

Joinin pitoNd VN 2 *

This intersection must exist for the situation of figure 7.17 to occur.
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That is, it is the least xN-2 such that

4,L 2,U 2 -

"N-2 -N-2 N-2 [N-2 -N-2(2)1 + 2 [HN-2(3) - HN-2 (2)]

+ GN 2(
3 ,4 ) - GN 2 (2 ) 0

Using the quadratic formula we find that

J7

N1 1+b 2 (1) (l- 2 )Q(1) 1 + 2
a)...$+ W2 (Q(2) + KNI(1:2)L

where (C.13.43)

m2
2 ( K (2) (1 b2 () lW 1

2 l 2 R '~(1) N +R(l) 1 2 Ql) l 1 l 2 j

b 2(l) 2+ 2 ( - -(i1 + 2)a (1)

R(1)
+ Q() +  2(12 ) 2 _~ 2

.(W 2)Q(l) + W2

.'., R( )

(C.13.44)

We note in passing that, in general, there need not be any intersection

of the functions 4'L(xN 2) and V ,U (xN 2) That is, we can have

X2  1. The condition X2 < 1

' .is necessary for the situation of figure 7.17 to occur.
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Now let us consider the situation shown in figure 7.18. Here

(C.13.31) holds with

'N-2 ( )  =5 (C.13.45)

and

%- 2 (l "I) = K_ 2 (1)

%-2(2:1) KN-2 = N-2 (4:1)

_(3:1) = _(4)

K _2(5:1) = (7)

N~-2 K-

HN2 (i:l) = G2 (i:l) - 0 i=1,3,5 (C.13.46)

HN(2:1) = H-(3) = -HN (4) = -H (4:1)
N-2 N-2 N-2 N-2

G N-2 (2:1) G _2(3,4) G N-2(4,4) = GN2 (4:1)

with

(0) - -( N-2+ 5

N-2N-

N42 (4) -N 2 (4)
(2) a -N-2(3) (C.13.47)

a(l) a(l)

and

6N-2 (1) = -N-2 (4)
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",''4,L VI,U

Joining point .N(1) is the leftmost intersection of V 4, and VN-
N--N2 N-2

That isthe least XN-2 such that

4,L 1,U 2 2 _0
'N-2 'N-2 N- 2 1-2 K-- 2 (l ) ] +  N-2 HN-2 ( 3 ) ) + G N-2 (3 ,4 )  0

Using the quadratic formula we find that

2 1 R(1) + b2 (1) 1N-l(4)
_2(1) = -- (1 + lH() 1 + /1 - 2

a(l) R(l) R(1) + b (1) KNl(l) *

(C.11.48)

S^4,L 1U
Since (4)< Nl(1), this intersection of V nd V always exists

XN-(4 K.1 V()1N-2 and V- lay2xit

(for the problems of this section).

In fact 7.4 we list several graphical conditions on the candidate

expected costs-to-go for 'N-2 (xN-2 ,rN 2=l) that relate to the three

situations described above. In particular

situation (1) / Leftmost intersection of

v4 ,L an 3, toth
(C.13.31) - (C.13.38) and to the right)

figure 7.16 of N (3)/a(1) (C 13.49)

situation (3) Leftmost intersection of
4,L vI,U

(C.13.31), (C.13.45) V and V to the left of
N- 14-2

((C.13.48) (or at) leftmost intersection
"['" k2,U - 1,u

of VN_ 2 and V1 _2  (C.13.50)
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5Now from (C.13.22) and (C.13.38), the right hand side of (C.13.49) becomes

(7.32). Since the denominator of (1.3.) is grater than one, any a(l)

satisfying (.7.31) will be consistent with our assumption (C.13.9). Note

U that

R(1) + b 2(1) Ki( 4 )
1<1+ - 2 -- < 2

R(l) + b 2(1) KN_(3)
1N-

(since Nl( 4 ) < K,i(31.) Thus we have that (7.3 - ' holds if (7.35)

holds.

We can obtain the less conservative, sufficient conditions (7.34),(7.3r)

substituting in (7.2)(7.33 the values

[- _(4) = (1-wi) (KN( 3 :1) + Q(1)) +i (KNi(1:2) + Q(2))

(3)= (1- (KN_ 1 (3:1) + Q(1)) + w(?_N- 1 (l:2) + Q(2))

Since, by facts 7.1 - 7.3,

T ~ (3 : 1 ) < KN(1:)< KN..,(1 (C.13.51)

" we have

(C. 13 .52)

2 (1))) 2
b (1) (W 2-W 1(( (s) 1) R(l) + b (1) K (4

2 1 < - _ :-l

21 2 11)
1+ (1) (N-(:2) + (1-02) Q(l)+W2 Q(Z)) R(l) + b (l) KN_

b (1) W- K +()
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From (7.32) and the right two terms of (C,13.52) we get (7.34). From

(7.32) and the left two terms of (C.13.52) we obtain (7.37).

From (C.13.35) and (C.13.46) the right hand side of (C.13.50) becomes

(7.33). Using (C.13.51), we can derive the inequalities

b2(1) (W2-w1) (Q(2) - Q(l) R(l) + b (1) i(4)2 1 < 1 -N-

R(1) + b2 (l)JV _ (1:2) + 1-W2) (Q(l) +W2 Q(2) R1) + b2 (1) K- -(I)
KN_I(-:2) + Q(2)

Sb2 ()[ )(- KA)-KT ( 1) Q(Il)

T2

+ (1-w ~)(iKN(1) - KN 2)(R (1) + b (1) 'K(2))

Rh 2  2 AR(1b 2) +b () )) (R(1) + b2 (1) N(i)

(C.13.53)
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C.14 Proof of Proposition 7.7

Proposition 7.7 is proved inductively for decreasing values of

(N-k). From Fact 6.9 we see that the proposition holds at time (N-1).
-.

In appendix C.13 it is shown that Proposition 7.7 holds at time (N-2)

We prove that Proposition 7.7 holds at all times (N-Z) by an induction

on 9, beginning with I = 2.

Suppose that Proposition 7.7 holds at time (N-L+1). We will show

that it holds at N-Z as well.

We first show that Proposition 7.7(4) holds; that is, the grid points

in th,, composite partition of XN-k+1 obey (7.44) for k = £ . This is clearly

true if we have

6N-+l W-2) < - (C.14.1)

and "- -<

< aN- +1(21 - 1) • (C.14.2)

From Proposition 7.7(4) (for k = Z-1) we have

6 (2-t-2) = -6 M(22-1)

N-2t+l NZ.

Thus we need only verify (C.14.1) to prove that Proposition 7.7(4) holds

for k=1.

We have assumed (by 7.12) and Fact 7.6(1)) that

a(l) < 1 + R(1) KN(2 )
A

and since K (2) =- and {Kk}N K

increases with (N-k), we have
2 A

a(1)< 1+ b2( 1) I-k 7for all kR(1)8
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Since (7.44) and Proposition 7.7(5) hold for k = X-1, we have

A A

' .- Z. Y_ N ZI(2'
)

hence
b2 (iA

a(l) < 1 + b (1) + (

Therefore we have1

- b2(l)^
(1 + R(-- R-.-+ (2t) < -a (C.14.3)

By (7.68) the left-hand side of (C.14.3) is N+(29.-2). Thus (C.14.1)

N-2.+l

holds, so we have verified Proposition 7.7(4) for k = 2.

The composite XN_2+1 partition and the eligible condidate cost-to-go

functions for VNt(NZrN--1) are shown in figure C.14.1. The formulas

for the parameters of each of these candidate cost functions and associated

control laws are given in Appendices C.l - C.4.

Using the fact that Proposition 7.7(4) is true for R. =k (verified

above) and that Proposition 7.7(9-10) are true for t.= k-i (by assumption)

we can simultaneously verify items 1-3 and 5-8 of Proposition 7.7 for Z= k.

Then we will prove that Proposition, 7.7(9,10), hold for Z=k, to complete

the inductive step.

Given the composite XN.+ 1 partition of (7.44), we can use Proposition

5.2 to list the eligible candidate costs:

tU
v _ t = 1,...

2Z,L

29.,R

1 > 0.
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Figure C.14.1 Composite x-Partition Grid Points and
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NI

ZI-3,V

Fiq3~e C.14.2: Ordering of Candidate Cost Functions
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Figure C.14.3: Finding the Optimal Cost for negative x values,

moving leftwards from zero.

839



Id 7. .. . .

Formulas for the parameters of these cost functions are given in

Appendices C.1 - C.4. Now given that Proposition 7.7(9) is true at

k Z=-1 we have

2L,U 22£-I,U _2L-3,U _3, I,
V 21,U < VNl < VN_3 < ... < VNU < V , (C.14.4)N-Z N-i 9. N-i N-9, N-i C.4

as shown in figure C.14.2.

From Facts 7.1 - 7.3 we know the formulas for the controller end-

pieces

V N_ (1) 1 ,U

Re 4Z-1,U .. .e mT i
VNt N-9mN

= vei-_L = vNN l )l

*. and the middlepiece

V_'C l) V (m._(1)/2 + 1:1) = VN_ £  * (C.14.5)N9 N-i. N-VN-X

_! Since the middlepiece cost function in (C.14.5) is also the lower bound

cost function

N ( V (l) -- V_

(by Facts 7.1 - 7.3), it is optimal over its entire region of validity:

- b (1) ^ _- ( ) =a(l ( R( ) (2.l )) < x - (1

+ () K -+l( 2 t))= 6 N-9()
Now let us consider VN (x1N4rN_=I) from XN0 leftwards (for

29,L 2Z,Uincreasingly negative X). Since V- intersects V_ at 6 N_(1),

it is clearly optimal immediately to the left of -N-Z (1), as shown in

* figure C.14.3.
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2%,L
VN_£  will remain optimal as we consider increasingly negative

XN_ in figure C.14.3, until it intersects another valid eligible1

.andidate cost-to-go function. As shown in figure C.14.3, this next

optimal piece of VN_2(xN2 rN 2=) will coincide with 2 _ if

2 2,-i ,UV is valid immediately to the left of its intersection with
N-2

2Z,L
VN 2  If this is the case then this intersection is a joining point

22.-lU 2.-l,U

of VN 2 (XN_2,rN_2=l) andVN2 1 U is optimal until VN2  ceases to

be valid, at

= .(22 -i) =(2Z-2)XN-. a(l) N-Z (C.14.6)

2Z-2,u 2
To the left of this point, V will be valid until it intersects

N- 2

another valid eligible candidate cost. The next (to the left) piece

of V (22,-3,tJfN-2xN22rN2-3, will be VN-2 if it is valid immediately to the

left at its leftmost intersection with N-2 . This process continues
until V2,u intersects V1'2 = e2

%'2-2- V-2)

When the requirements of validity described above and shown in

figure C.14.3 are met, then (1) - (3) and (5) - (8) of Proposition 7.7

hold for k = Z. That is, using (7.70) - (7.71) for k X we need

NZ (21)< 6 N_ 2 (21+l) (C.14.7)

for i = £-l,...

for (1) - (3) and (5) - (8) to be true.

In the sense of section 7.2

2 as XN_£ decreases
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Let us consider

N-_9 (2 2) 4C NZ (2Z-1) (C.14.8)

4e have, by (7.71) with k =

H N_- (29:1i)

(2_-Z- 1) -- (1 + -r-i ) (C.149)
2[K_(21:1) - I_ {21-i:i)]

where

4[EKN-2(2k: 1) - N( 2 t-1:1)] G (21.: 1) (C41
= - 2 (C. 14. 10)

HN_ (2:1)

Now since

HN_(2Z:I) = 2a(1) R(1) 2

N-~~i 9
2 (I) /b(1

2
(2-) - K (2-1:1) a2d R (1)

b2 (1) (R (1) + b2 ( I ) 1)(21-1)

we have

dN- (2£ - ) a- (1 + (1 iv-) (C.14.11)

From (7.70) = (C.14.6) we have

2 (b()
aN-X (21- 2 ) = 2 R(1) IN_+ 2 ( 2 1- 2 )) (1 + b2 (l-- -1 +a (1)

(C.14.12)

From (C.14.11) and (C.14.12) we have that (C.14.8) holds if

2b2 (1) A
a(1) 1 + b(1)----) K-L+2( 21- 2 )

(C.14.13)
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But

< <

1+ 4

So (C.14.13) (hence(C.14,8j holds if

2
a 1) (1 + b (2(-2) (C.14.14)

2 (1) 'N-9+2

Now

K (21t-2) K~I
N- .+2 NZ+2

so we need

a (1) < -(1 + LLKM (~).(C.14.15)
2 R R(1) N-9Z+2

This is guaranteed to be true, however, since by (7.35) we have assumed

2
a~l) < 2 (1 + l)X2)

1 b1ALIM
2-U1+ K (1))K (C. 14.16)

and (by Facts 7.1 - 7.3), {KMkI increases monotonely as (N-k)-* -. So

(C.14.7) holds for i -Z -1. For other values of i in (C.14.7) we need

6 (2i) < 6 (2i+l)i=

to hold which, by (7.70) -(7.71) (with k =X. )I requires that

+ (1) (2i)) .I 1 + b<()R1 N~(il

< - i + C.4.8

2(KN-z(2i+2 l.) - P K (2 i+:1)]
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* .where 0 <X < 1 (C. 14.19)

Substituting for the parameters in (C.14.17) yields the requirement

a () <U +RU.l) KN.+l (2 i))

1 + Ir1j. (C.14.20)

* which *,by (C.14.19),iguaranteed if

( 1 RU.) KNi,+l(.2iI) (C.14.21)

But . aMU

KNi+l (2i) % Ki+l (l) < Yj(1)

so (C.14.15) guarantees that (C.14.21) holds for i =1,2,..., Z-2. Thus

condition (7.35) -:(C.14.16) results in the situation of figure C.14.2

That is, (1) - (8) of Proposition 7.7 hold for k=

Given (1) - (8),. it is easily verified that (9) -(10) of

Proposition 7.7 hold,using Lemma C.13.1. This completes the inductive step

(on L ,and the proof of Proposition~ 7.7.
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C.15 Conflicting Goals Problem Derivation

We are considering problems of the class (C.13.1) - (C.13.7)

where, instead of (C.13.8) we have

!1 i> 2 (C.15.1)

hence, by Fact 7.3 it follows that:

the endpieces V 1) -- Re(1) are given are given by the

same function of xk as the lower bound Vk (1)

themidleiec LM~l VRMthe middlepiece V (1) Vk (1) is given by the same

UB
function of xk as the upper bound Vk (1)

That is, we have the opposite of the situation in section 7.5 and

Appendix C.13.

We will also assume that (7.14) holds:

(1 b(1) (-K (2) - 2 2)(C.15.2)a() +R1--- R41) +- b -(1) 4 (2)

hence we have "situation (I)" of table 7.2 and figure 7.23(d) applies.

In section 6.6 we obtained the complete solution for this problem at

k'- N-l; it is specified by (6.112) - (6.116), (6.119) - (6.120), (6.147) -

(6.154) and figures 6.14 - 6.16. Using lemma C.13.1 we can show that,

as in figure 7.23(c):

": _I(2: 1) - _1(4:1) > _(3:1)> _ll)- _(5:1). (C.15.3)

This is done as follows: since we have

% A% A

KN(2) < KN(1) = (3)
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then (1) of Lemma C.13.1 and (6.128), (6.130) yield

(:1) -KN( 5 :1) < K (3:1)
-l N-1

The other inequality in (C.15.3) is obtained using (2) of Lemma C.13.1.

1,R I,U
Since VN- (2:1) = VN1  and VNl (1:1) -VN 1 we have

2

V-(2:i)= x H (2:1) > x2  K-i:i)= VN-(l:l)

N-1 N 'N-i N-i 1 N-

(C.15.4)
G 1(2:1)
N-1

except for equality at W = N-I (i).

Now let us consider time K = N-2 for this problem. Among the eligible

candidate cost-to-go functions for V (xN_2 lrN 2=l) areN-2

t,U 2
V- 2  x -2(t) + XN_2 HN_2 (t) + GN_ (t) (C.15.5)

for

8 4 2 (t) E (t)
a() < <- N-2
a(l) - N-2 - a(l) for t =1,2,...,7

where (see appendix C.l) we have the parameters in (C.15.5) as given by

(C.13.17) - (C.13.23).

Given (C.15.3), w2 > W and Ul(1) < K(l: 2)

we have
AA A A

N1(l) K ~ 1 (7) < KN 1 (3). KN1( 5 ) < KN 1 (4) (C.15.6)
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by Lemm~a C.13l(l) and thus

4,U 3,U 5,UJ 7,U 1,tJ
N -2 > -2 N -2 'N-2 -"N-2  ~o~ ~ ~ (.5

By (C.15.6) we also have

2,U 1,U
N -2 >NV-2 except equality at 'N-2 =N-2 ) 1

6,U 7,U except equality at x -9 (7)Ia(l)
%- 2 > %- 2  N-2 6N-21

That is, we have verified (7.106) -(7.108) and figure 7.24.

tU
in addition to the V(t-l,... ,7) the other two eligible candidate

-2

* functions for VN x~ rN2  are

2 Pd 2
v 3 :(x rl2=) =XN- 2 %- 2 +. xN 2 HN-2 (1 +.N

5,L 2 X 2 N (4) (4,5)VN-2 (xN-2 rN-2 l) m xN-2 %- 2 + N2 -2 +G2

where* H(3) and Ft (4) are given by (C.13.26) - (C.13.28) andN-2 ' 'N-2 'N-2

(3,3) a2 Y_3)+R(1) 1 G= (4,5)
= 7N-2 b2()

when the first situation for VN-2 (XN-2 rN-2=1) occurs (as shown in

figure 7.25) we have

2
VN-2(i:) - XN2 "N-2 (':') + xN-2 %-2(i:l) + GN-(i.1)

for 6 N-2 (i:1) < XN 2 < 6N-2(') (C.15.8)

with i = j,.,'- 1

wh r-N - 1 9 *(C.15.9)

...............................



Here

KN 2(i:l) = KN 2 (i) i = 1,2,3

K(4 :1) ( N2=K 2
6 :1)

N -2 % 2  KN4 2

%- ~b~( 5 :1) " KN2 (4)

K 2(i;) - KN 2 (i- 2 ) i - 7,8,9

HN_ 2 (i:G) = G 1(i:1) = 0 i - 1,3,5,7,9
HN-2 ':1) N- 2

HN(2:1) = H (2) = -H (C.15.10)-'N-2 N-2 HN-2~ 6  - uN-2(8 :l)

GN_ 2 (2 :1) = G2 (2) =GN_2(6) G N-2(8:1 )

HN-2 (4:1)= HN 2 (3) =- HN- 2 (4) = -HN2 (6:1)

G (4:1) G (3,3) = (4,4) = G ( 6 :1)N2N- 2-2 N-2

a with

N-2 (0) eN-2(9 )  +

N- 2 (1) =N-2 (2) -"N 2 (5) -eN-2 (7)
N-2 ( 1 )  a(1) = a(1) a(1) a(1) N-2 ( a )

2(3) - N-2 ( N-2 8 ))
N-2 a(1) (1) N-2

and

8 N_2(2) - 7)

6N_2 (4) ( -(5)
N2N-2

Joining point 6 (2) occurs at the rightmost intersection of the functions
N-2

2,U ag VN..u
VN_ 2 A This is the greatest XN-2 such that
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v2,U 3, U 2 [~(2) K (3)] 1NH2
2)+

N-2 3,O XN-2 [-2 %-2 +

+ G (2) =0
N- 2

From figure 7.25 we see that this intersection exists for all parameter

values consistent with the assumptions of this section. Using the

quadratic formula we find this point to be

/L 2 ()2
6 - (2) + R (1) KN (2) 1 i 2 K - ( 3)  ( X3
N-2 2(l R + - 1()tl-l-

(C. 15.12)

where

Sb _ (1) A 2-( - 2 ()+3 b() % 1) 1 + R 1 M_(2) (C. W15.3)
1~~ 2 ~--- -

-1,

\ R(l) ~N'/ R () KNl /2

Joining point 6 (4) occurs at the rightmost intersection of the
N- 2

functions v4, and VN_ 2 . Using the quadratic formula, we find thisfuncti nV-2 an N-2

intersection to be

/ 2 R(l) +b(1) (3-(4) 1 -Y + -(4 1 -/2
-1 R + b() -i(4 )

(C.15.14)

Since _i(3) < (4) for this problem, this intersection of 3,R and

4,UVN_2 always exists (for the problems of section 7.6). This completes the

derivation of VN 2 (xN_2 rN_2=) for the situation that is shown in

figure 7.25.

Next let us consider the situation shown in figure 7.26. Here (C.15.8)

i ,~49-"

* . .



S "-holds with

'N- 2 (1) - 7 (C. 15. 15)

and

-2(i:i) %- 2 (1) i-1,2,6,7

(4:1) 2 (4 )

N-2(3"1) K N-2  % 1-2(5:1)

H (i1) = G (i:1) i=1,4,7

N-2 GN-2

HN 2 ( 2 :1) = H._ 2 (2) =-H (6) = (6:)
%2%2N-2 %- 2(

6 l

GN2(2:1)= GN- 2 (2 ) = GN 2 (6) = GN_ 2 (6 :1) (C.15.16)

H2(3:1) = (3) =-H (4) =-H_(5:1)
HN-2 N-2 N-2 'N-2
G (31) - -(3A) (4,5) (5:1)

Gq)N-2 2 N-2 G-

with

- (0) (7) A+
N4-2 N-2

EN-2 (1) eN-2 (7)
()(1) (6) (C. 15.17)

and

N-2 (2) -6 2 (6)

(3) -N2(4) * (C.15.18)

Joining point 6N-2(2) occurs at the rightmost intersection of the functions

2,U 3,R
VN_ 2 and VN_ 2  Using the quadratic formula we find that

" (2 1 a a(1) (1-wo2  + R(-- KN-(2)

6N-2(2) 2 a(1)R(1) 4

"% (C.15.19)
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where

2 A 2
= (1 + b(1)- 1 (2))11 + KN--I( 3 ) - (1-(1)( b (1)

R (1) 1N (1) 2 R1

+a2 (1)( Il )

b2 () W 2

[i + Ri( K-1 ( 2 ) - a (1) (1 in (1 -5 20C.15.20)1

in general, there need not be any intersection of the functions 2,_U and

- V3 ,R . That is, we may have 4 > 1 in (C.15.20). The condition 4 < 1
N-2"44

is necessary for the situation of figure 7.26 to occur.

Joining point 6N-2 (3) occurs at the rightmost intersection of the

functions V3 R and V4 U  which we have already computed in (C.15.14).
.N-2 N-2'

Now let consider the situation shown in figure 7.27. Here (C.15.8)

holds with

mN 2 (1) - 5 (C.15.21)

and

_2(i:l) W 1_ 2 (i) i = 1,2

-2 KN 2 (
( 3 : 1 )  I 2 (4)

2 (i:l) - U+2) 1 4,5

HN-2(i:l) GN2(i:l) - 0 i = 1,3,5 (C.15.22)

_N-2(2:1) H N-2(2 )  HN2(6) -HN 2 (4 :1)

GN2 (2:1) GN2 (2) = G N2(6 ) = GN-2(4:1)
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with
N2()A A

= - N- (5)= + 0
N-2 N-2

S (1) (7)
-(1) N-2 N-2 6 (4) (C.15.23)

N-2 a(1) a(1) N-2

and
6 (2) = -6 (3) * (C. 15.24)
N-2N-2

Joining point 6 (2) occurs at the rightmost intersection of the functions
N-2

2, ,,VN2 and V4 ,U Using the quadratic formula we find this intersection to
%-2 N-2

be

--a(1-2 ) (R () b 2 (l) (4)

N-2~~ b(1)(~~i2) ~-~'~(c. 15.25)
2 'N-2

(1 2 A1) i.A+_2 5 ) )

6, 2 2 R(1) R(l) Y (4))6 5
a (1)

(C. 15.26)

where

2 22

2 b2b1))(_1(1+-b 1))) [(i+lb 2 1 ) 2N(b))1
b 1).- -21~ R¢1) (1)) (1 ) K-1¢2), ¢- )2 € I )

="(R + (1) K N(4)) a (1) (1-W 2 )" ' (C. 15.27 )

and

~ -4-2 2
.: 6 + (WI - 2 ) (1 + b (1))(R(1) + b (1) K(2))(Q(1) Q(2)

- N-1 (:2)) (C.15.28)

2,U 4,U
Since VN2 and VN_2 must have two intersections to the left of XN 2 - 0,

V -2 VN-2 N2 /

(C.15.26) implies that
"A A

1N 1(2) > (4) (C.15.29)
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In fact 7.9 we list several graphical conditions on the candidate

expected costs-t-go forV N-2 r N-2 -1) that relate to the possible

situations described above. In particular,

situation (1) rightmost intersection

(C.15.9) - (C.15.14) of V and V~i is
ofN-2 N-2

figure 7.25 to the left of

0 N-2 (3)/a(l) (C.15.30)

*situation (3) rightmost intersection of

2,U 4,U
(C.15.21) -(C.15.26) A-AL and V - to the right

figure 7.27 (or at) rightmost intersection

3,R 4
(of VN- 2 and V N-2

(C.15.31)

From (C.15.12) and (C.15.22), the righ~and side of (C.15.30) becomes

(7.113). From (C.15.14) and (C.15.25), the right-hand side of (C.15.31)

becomes (7.114).

Using the fact that

22K l( 2 :1) -a (1) R(l)/b (1)

we can rewrite (C.15.13) as

+ b2 ( 1) \ +I 2 ( l K _ ( : ) + Q 2b(l) _____) W

2 A

2 b(l) Nl

+ bQ (1 + b 2 ( F l- w 2 ) ( I % N _l (3 : ) + Q (l)( . 5 . 2R~~~l)~ KN/ R2l L (N_1:2) + Q(2))J (C132
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which leads to the bound

/ b (1) b2(1) rlwQ1

W2 (KN-l(l: 2 ) + Q(2))

/ 2 W2 (11

+KN(2) 1 R(' ()
( ) b ( 1 ) L Q ( 2 ) + % -1 ( 1( C .1 5 .3 3 )

which yields (7.115) of fact 7.11 directly. To obtain (7.116), we note

from (C.15.13) that

2
b (1) (

3b2(1) ,,4

1 + R- (2) (C.15.34)
R(l)

Since K-i (2) > %-1 (3). Thus since

Kb 4( 2 ) - (1) > ;()

(by Fact 7.3), (C.15.34) yields (7.116).
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C. 16 Proof of Proposition 7.12
p

Proposition 7.12 is proved inductively, for decreasing values of

(N-k). From fact 6.10, we see that the proposition holds at time (N-l).

In appendix C.15, it is shown that Proposition 7.12 holds at all times

(N-Z) by an induction on Z, beginning with i= 2.

Suppose that Proposition 7.12 holds at time (N-i) + 1. We will

show that it holds at time N-Z as well.

We first show that Proposition 7.12(4) holds; that is, the grid points

L in the composite partition of xN-k+l obey (7.17.2) for k = Z. Following

the argument for proving Proposition 7.7(4) in Appendix C.14, we need

only verify that

6N 4+1(2Z-2) <-a, (C.16.1) -

Using the expression for _£(2 -2) given in (7.128), we have that

(C.16.1) holds if

a(1) < + (( 29,-2)( l R(1) + b2 (1) %-Z+2(2k-2)

(C.16.2)

But (C.16.2) is implied by assumption (7.117). To see this, note that

(C.16.2) can be rewritten as

/ 2M
() /b 1)\ l (1) (W -W) Q(2)Q(1) + ~+(1 2) KN-_ (1all)< 1 + b[ 4+2(1) 2 1 %-Z+ Z_

R (1) ZN-+2 Rl+b 2 (1)R (1) + b(i) ̂  ()2

(C.16.3)

and (7.117) can be rewritten as
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R (1) 2 (1:)-
K~(l)) (RMl + b (1) ()T

(C.16.4)

Since, by Facts 7.1 - 7.3, the sequences(Kk(l:2)} , {K (1)} and

{t 11} increase with decreasing k, (C.16.4) z- (7.117) is more restrictive

-than (C.16.3) - (C.16.2). Thus (C.16.1) holds, and we have shown that

Proposition 7.12(4) holds for k = Z.

The composite XNz+l partition and the eligible candidate cost-to-go

functions for VN-Z (xN-Z'rN- = )are shown in figure C.16:1 The formulas

for the parameters of each of these candidate cost functions and

associated control laws are given in AppendicC.l.- C.4. Note that

VNl is eligible and valid for xN_£+l < 0; we can exclude itseligi-
_2Z,R _2,

* bility in the interval (0,%) because V2Y is eligible here and v2_,

and V2+lL cross at 0.

Using the fact that Proposition 7.12(4) is true for Z= k (as verified

above) and that Proposition 7.12 (10-11) are true for Z - k-1 (by

assumption) we can simultaneously verify items (1) - (3) and (5) - (9)

of Proposition 7.12 for Zu k. Then we will prove that Proposition

7.12 (10,11) holds for Z - k, to complete the inductive step.

Given the composite x-z+i partition of (7.122), we can use

Proposition 5.2 to list the eligible candidate costs:

2t-l,RVN-

2X+5,L
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Now given that (7.134) of Preposition 7.12 is true at k Z -i, we have

1,U 3,U 21-,V 21t,U
V < V < ... <V < V (C.16.5)
N-Z N-i N-Z N-i

as shown in figure C.16.2.

From Facts 7.1 -7.3 we know the formula for the controller endpieces

V Le (l) =V~' 1, V (1:1)

V~e (1) 17 4X = V im~():l)

and the middlepiece

~~i~l) = V~i ~ (1) +11
VLM 'NZ 21,

From figures C.16.1-2 we see that v2XU is optimal over some interval* VN-i

about zero because at XN ,viUis less than the other two
-)0+1,L 29.,Rcandidates (VN ~ and VN-Z

The endpiece functions vU=vilU are the same as the lower
N-k N-i

bound function NV' (1) for this problem. Thus these functions are

optimal over their entire regions of validity:

G (1)
l,U N-i

VN9(xN-'NZl N-i fo N-Z a(l)

e(4 -1)
V ( ,r =l)=V ,U forx N4

VN-i (N-i N-,i) VN-i XN-i a(l)

Now-let us consider vN~(x .1~i~) as we sweep rightwards from

2 NZ--. To the immediate right a;

0 - 1)
S (1)=

N-9, a (1)
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",A

N-k

N -t r-L A

vsJL

FigureC.16.2: Ordering of Candidate Cost Functions
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V2,U is optimal. It will remain optimal as xN_£ increases, until it

intersects another eligible valid candidate cost. This next optimal

3,U 3,U
cost will be VN_ unless V is not valid to the right of the V'- - N-Z

3,U 3,0J

and VN 3,u intersection (see figure C.16.3). If VN_, is valid inmediately

to the right of this intersection, then this intersection is joining

3,U
point 6N- (2). V-, will then be optimal (to the left of 6N_- (2)) until

6 NZ(3) E) 0Nz(3)/a (1),

3,U 4,U
where VN z ceases to be valid and VN z becomes optimal (for Z > 3).

4,U N5,U

Then next joining point will be at the intersection of VN_Z and N-_

5,U
(for > 3), if VN_ 2 is valid here.

This pattern continues (if the validity requirements shown in

figure C.16.3 are met) until, at

dNA (2Z-I) = 0 N_ z(2Z-l)/a(l),

_ 2 .-IR 22-l,R

the optimal cost becomes V VN_, is then optimal until itN-2. VN

22,Uintersects (the middlepiece).

When the requirements of validity that are described above and shown

in figure C.16.3 are met, then (1) - (3) and (5) - (9) of Proposition 7.12

hold for k Z 2. That is, using (7.129) - (7.130) for k = Z we need

6_(2i) < 6 (2i + 1) (C.16.6)
N-2. N-2.

for i = 1,..., Z-1

for (1) - (3) and (5) - (9) to be true.

From (7.129) - (7.130) we can rewrite (C.16.6) as
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ab+ ( 1C .,(2i))(1 x il 4 (c.16.7)
R(1) -

where

Z i-i R(1)+b 2 (1)KN 0+p(2 i)

1 0) 2 7 2
R(1) +b (1) N-i+l (2i) p=1 R( + (1)KNZ+(

p=.+ bR (1) b-lK (2i-1))

Z-• (a2 (1) R (1)(1 - w2)]S

SS-2

s R(l) + b 2(1) K i (2i)] Tr (1)+b 2 (1)KNi-q (2i)J 2

s=1 'N-i-s+. q~

(C.16.8)

If (C.16.7) holds at each i = 1,2,...,Z - i then so does (C.16.6) and,

consequently, (1) - (3) and (5) - (9) of Proposition 7.12 holds for k =

Now

A-i+1(2i) (C.16.9)

so, by Facts 7.1 - 7.3,

2(1 b()
(1 + b(-) KN4 -+1(2i)) > (1 + R(- KN( 2 )) . (C.16.l0)

From (C.16.8) we see that for each i = 1,..., 4-i,

2AR(l) + b2 (1) -i+l( 2 i- ) (C.16. 1)

R(1) + b (1) K-il (2i)

(since _+(2i) > K_+(2i) by (10) of Proposition (7.12). From

(C.16.9) and (C.16.11) we obtain

R(1) + b 2 (1) A(1)

^XzU) + b2  ^A (C. 16.1.)
R(1) + b2(1) K; (1)
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Since the middlepiece parameter sequence {KMk(10} increases with (N-k).

From (C.16.7), (C.16.10) and (C.16.12) we have that if

a~) ( 2 (1 ()~( -R(l) +b 2 C)K- la 4)R ( (l) N 2 ()A LMR(l) + b ()K;; (1)1
(C.16.l3)

then (C.16.6) holds. But we have assumed (C.16.l3) to be true, since it

is identical to (7.116) of fact 7.11.

Given that (1) -(9) of Proposition 7.12 hold for k = ,it is

easily verified that (10) -(11) are also true (using Lexmma C.13.1).

This completes the inductive step (on Z), and therefore the proof o;

Proposition 7.12.
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C.17 Proof of Proposition 7.14

Consider first a coummensurate goals problem satisfying the

assumptions of Proposition 7.7. Applying the controller described

in (1) of Proposition 7.14, we obtain expected cost-to-go

VNk (xN krNk=l) for (N-k) < (N-p). Since the controller that

we are applying is suboptimal, we have

V (x ,r =1) < V ( 1
N-k N-k N-k VN-k (xNk,rNk--)

at each xN-k value. From fact 7.3(1), we have that the endpiece

cost function is an upperbound:

Le2
VN (XN ,rNk=1) < V (1) = vRe (1) VU_ (1) x 2
N-k N-k N-k N-k N-k N-k ) N-k KN-k (1:1)

From (9) of Proposition 7.7 we have that

2
x 2 k (2(k-p+l)+i:i) < V (x ,r =1)
N-k N-k - N-k N-k' N-k=

for each k < p, at all xN-k not in (6N-k (2(k-p)), 6 N-k( 2 (k+p)+l)).

To prove (7.145) it remains to be shown that for these x we
N-k

have

VN-k(XN-krN-kl) < -k-k(:)(C.17.)

For XN-k > Nk(4k) and X- < (1), the optimal expected cost-

to go and the suboptimal controller's expected cost-to-go coincide;

that is, equality holds in (C.17.1). For any X-k satisfying
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N-k(2(k+p)+1) < XN-k < N-k (4k)

or

6 (1) < x < 6 (2(k-p)
N-k N-k N-k

the approximate controller applies the endpiece laws1

(1:Nk(l:l).1k+dl(l:1) (or (4k+1:1),(4(k-d)+1:l))
+1

until, at some time (N-k+d), it drives xN-k+ d inside the interval

(6Nk+d (2(k-d-p)), 6Nk+d( 2 (k-d+p)+l)). (C.17.2)

Then, sta.rting with UNk d  the suboptimal controller uses true optimal

control laws. That is, the expected cost-to-go of the suboptimal

controller once x is inside (C.17.2) is the optimal expected cost-

to-go. Since this cost, VN-k+d(xN-k rN-k=l), is bounded above by
22(1:1,k+d:) we have (C.17.1) and thus (7.145) holds.

For conflicting goals problems satisfying the assumptions of

Proposition 7.12, an analogous argument holds using fact 7.3(2)

and (10) of the Proposition 7.12. Part (3) of Proposition 7.14

follows directly from (2).

unless the system jumps to form r-2
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C. 18 Proof of Proposition 7.16:

Consider a JLQ problem specified by (5.1) - (5.6) when the sub-

optimal controller of Proposition 7.16(1) is applied. Clearly at

all XNk e R,

VN k(xN-k rNk. V VNk~xN(k,rNkj) (C.18.1)

for each j e , since the applied controller is not optimal. Recall

that the optimal JLQ controller minimizes, for k > 1:

N-I
2

XN-k+k+l Q (rN-k+Z+l)

XNk+Z+l S(rNk+Z+l)

VN-k(xN-k'rN-k) = min E +uN-k"'" 'N-I

P (rN-k++1 )

2
Z U N_X+Z RN-k+Z)

[4.

VN(xNrN (C.18.2)

where

2
VN(x,r) - x KT(r) + x H T(r) + G T(r) (C.18.3)

From (7.151) we see that vL'P(x Nk,rN) corresponds to the problem in

(C.18.2) if no costs are incurred after time (N-). That is, if

VNp (xNP,r N p ) = 0. Consequently

p , r < rN (C.18.4)
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for each xN-k e P., at each e 6m. From (7.152) -(7.153), we see

that (x r solves the problem in (C.18.2) if we have the
N -k(N-k N-k)

additional constraints

x Nk+Z 0 Z pp+ll...,k .

Thus at each time (N-k),

VN-(xN- N-~ ) V V-'(x ,'r )- (C.18.5)

for all (xN-k r N-k) Combining (C.18.1) -(C.18.5), it is clear that

(7.150) is true if

' 1k(x kr~k <~kX~ (C. 18. 6)

for all (x krk) We can verify (C.18.6) by noting that

the problem (C.18.7) (for (N-k) < (N-p)):

N k+Z4-l N-k+Z+l

XN-k+9Z+l S(r Nk+i+I)

V-(x- ,r -) min E P(r -kl
N-k N-k-N-k N-k+2-1

* U~~p L0 UN~k.  R(r Nk+k)

+

VN(xN..k+p Ir Nk+p)

(C.18.7)

Comparing (C.18.7) with the problem (7.152) that VUIP (x ,'r -

solves, we see that (C.18.6) is true. Thus Proposition 7.16(2) holds;

Proposition 7.16(3) follows immnediately.
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D. APPENDICES TO PART IV

D.1 One-Step Solution Equations (for Proposition 8.1)

For t = 1,2,...,4k+i let

be the index of Xji( - ) valid in (8.3) when

xk+ e + )

t be the index of the piece of Vkl (xk+c k 1 '-- i)

valid when Xk+l e q+l (t),

3ji be The index of the x-cost
t

SQ(Xk+l,rk+l=i) valid when

Xk 1  e + (t)

and in proof step 1 of Proposition 8.1.

Define the conditional cost parameters in k8.39) by

M

i=l t +1 t

3 it W CX.. t +1 + (D.1.2)

i=l

G~~1t) = X (2')[Gk (E;i)
ii~ l t k +1 t (D.1.3)

Suppose that b(j) # 0. Then let
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2
b (j) KiC? (to 2

k Op k+ y k+ 1  k+I R(j) H 2R() k+l

(D.1.4)

=yJ (1) [1+ b (j) + (1) (0.1.5)
k k+l R(j) 2R(j) +1

For t= 2,...43k -1 if
k+1

> -R(j)K(+l.. 2
b (j)

then let

A .

bC() K +lt A

=k(t) y k+l(t-1) (1 + ] + 2 H (t) (D.1.7)

2 A.

y ¢t) = + +tb HD (t)(
k Yk+1t) 1+ R(j) 2R(j) k+l

For t = 2,..., k3 if
k+l

< R().1.9)+I(t) < b2 (J)

then let

[y I (t) + kJ (t-1)] [R(j) + b2(J) +1(t)] + b 2(j)H+l(t)

6'(t) =&3t) k+1 k+1 2Rij)
k k

2RlJ)

(D.1.10)

For t = 2,. .,i4  - if

b (j)
then let

3 (j) %+ ( t )j (D.1.12)
k k 2R(j) +l9

869



Note that (D.1.12) is consistent with (D.1.7), (D.1.8) and (D.l.10) when

(D.1.ll) holds.

The candidate costs-to-go in (8.44) and corresponding optimal

control laws in (8.45), and the optimal ek+1  A+l(t) values achieved

by these controls are:

~t,L 2
= K K + Xk H, +Cttl t D..3

t,L(
j) =xkli -L kxk + F (t-l) (D.I.14)

tL, k
Xk.l(xkJ) = ¥k+l Ct-i) (D.l.15)

for t = 2,3,..., J ifk+l
a(j) xk < 63(t)

and

1P tR 2 -j (..6
kKR, (JCt) + 5J(t,t) (D.I.!6)

+ Ct) (D. 1.17)
uk C(kI3 -Lkxk +Fk(tt,R

(x kJ) (t) (D.1.18)
xk+l xkI k+1

for t =,2,..., i -1 ifk+l

(t) < a(j) xk

For t 1 1, t =k3 , and for t 2,..., k, - 1 if (D.1.6)

holds, we have
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v• t, x 2 (t) + G (t) (D. 1.19)

<uU(xk j -) -Li (t) xk F (D. 1.20)

x+l(xkj) + [a(j) - b(j) (t)]x k + b(j) Fk(t) (D.1.21)

if
!-. 8J(t) < a (j) xk < 93J(t)

In (D.1.13) - (D.1.14) and (D.1.16) - (D.1.17) we have

a2 ) R(j) (D. 1. 22)

b2 (j)

-2a(j) R(j) Y k~(t)

= k+1Hk(t) bb2(j)

for t = 1 , -1 (D.1.23)

~(St)-~k+1 k+lGc k ~ (SCt .. yt(

fy s]2 Aj +R(j) (D.1.24)
k+/ b 2 (j)/

defined for

S t for t =1 ,...,. - 1

and t- for t = 2,...,kl '

and

= a(j)/b(j) (D.1.25)

F (t) = y (t)/b(j) (D.1.26)

for t =,...,k+1
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In (D.1.19) - (D.1.21) we have

(t) KT(j)

a2 (j) R(j) K+l(t)

Hj(t) = b2 l (D.1.27)

2

R(j) + b(j) l(t)

3(t) H (j)

a(j) R(j) (t)

k(t) -+ b2 ^j t (D.i. 28)

F(t) = (~l32
k2 ^3

2R(j) + b (j) K +l (t)

T v e fG I)=G(j) (D.I.29)

bj (J) [H +i(t)12

t sJ(t) (t) - F2 ar (D. .30)k =k+l 4[R(j) + bj 2 M +l(t)]

.[ and

: Lj (t)  2 ajb(j) A+it

R(j) + b2(j +l(t) (D.1.31)

• -b~) +i(t)
F3(t) -bj b2 . (D.1.32)

k2JR(j) + b2(j) + (t)]I

The values of (j), (63(t) K -,.,kj -i (~)

Rk(t:j), Gk~~) Lkt j  adF(t:j) are assigned, for each j 6 M,

by performing the minimization indicated in (8.49). The procedure

for doing this is given in section 8.5. The derivation of (D.1.4) -.4
(D.1.32) is done in the next appendix section.
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If b(j) =0 then the optimal control is

uk(x]kIrk~j) =0 (D.1.33)

with

xk+l =a(j) x.k (D.1.34)

and cost

Vk(x.Irkj) a2 (j) KH (t +<+aj)H4 (t) xk (D.1.35)

C ,t)

where the index t is determined by which region A,+l1(t) the xk~l

value is in (for each xk value).

When b(j) = 0, (D.1.33) - (D.1.35) are the same as

(D.1.13) -(D.1.15) with 63(t) and 03(t) as in (D.1.4) - (D.1.8)

k k
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D.2 Derivation of (D.1.4) - (D.1.32)

From (8.42) and (D.1.1) - (D.1.3) we have that

2.ukR(j)

+
Vk[xkIrk=J It] = mai2 (jt) x (D.2.1)

uk +l K+i(t) + il

s.t. +
Xk+1  k A+lt Aj

G~ ~ Wt i t
k+1

From (8.1) we have (for b(j) # 0) that

xk+ - a(j) x
k k+ b() (b)j) # 0 (D.2.2)

'k b(j)

Thus (D.2.1) becomes

2 R(
xk+l kk+l(t) + 2()

b (j)
+

2a(j) R(j) x.k

Vk[x k ,rk= jIt] in Xk+ CHk+ l  2
b (j)xk+l e A'+ t

2 2
a (j) R(j) x

[Sk+l + b 2(j)

(D.2.3)

Suppose that b(j) 0 0 and

62Vk [xkrk-jjt R(j) Aj

2 2 ( + K j (t)] > 0 (D.2.4)
b2

(j) -j +0( xk+l )

Then we can minimize (D.2.3) by differentiating with respect to Xk+l
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*i. .- . : I . . . - : . . .. .; . -. - ° h

and setting to zero. We find that the optimal k+1 is then

2a(j) R(j) xk -b 2 (j) k+lDt)xj (D. 2.5)

2JR(j) + b2 (j) K4 +l(t)]

if this Xk+ is, in fact, inAk (t)

For t = 1 and t = f+l ,  (D.2.4) is always true. For t1,

e A+(1) if and only if
* ~. k+1 k+l

2 . Aj1
a(j)xk < +l(t) [R(j) + b (j) Kj+l1 (t)]

' L b2 H+l (t)

R(j) (D.2.6)

We define the right side of (D.2.6) to be 03(l), as in (D.1.5).
k

For t ekl kl if and only if

y +(t-1) [R(j) + b2 (j) Kj+l(t)l

2 H+I t )

b~j)< a1 jt
R (j)a(j) xk

(D.2.7)

We define the left side of (D.2.7) to be k (Gk+l as in (D.I.4).

For t # ,...,k+l-l with (D.2.4) holding, k+l k 41 (t) if and

only if
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yk Ct-l)JR(j) + b2 (j)K+l1 t)] + (t)JR(j) + b 2k+1 (i)k~lt)

+ < a(j) x < +
k

22

2 -k+l 2 Hk+l(t)

R(j) R(j)

(D.2.8)

The left and right sides of (D.2.8) are defined to be 63(t) and

03(t) respectively, as in (D.I.7)-().I D.2. yields (D.1.19) - (D.1.21)

and (D.1.27) - (D.1.32).

Now if b(j) # 0 and (D.2.4) holds but

a(j)xk < 8(t)

(D.2.4) implies that the best we can do is to drive Xk+l to

k+l (t-l), the left boundary of +l(t). Thus from (D.2.2)

t ,La a(j) X + 3+i(t-I)
u (xk+lj) = - (j) (D.2.9,)

which yields (D.I.13) - (D.1.15) with (D.l.22) - (D.1.26).

Similarly, if

a(j)x k > EJk(t)

the best we can do is drive x+ to Y3(t), the right boundary of

(t). We then obtain
3

tR -a(j)xk + yk+ (t)

(k+! = b(j)

which yields (D.l.16) - (D.l.18) with (D.1.22) - (D.1.26).
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If b(j) # 0 and we have

f2k xk,rk=Jl1t]
< 0 (D.2.ii)

(bxkl) 
2

then the optimal Xk+ is at one of the boundaries of A+l(t). We drive
.+.

to the left boundary, y74+(t-l), if

j 2 Aj 2 "jk +l ktl

+ +

k+l k+J.Kl k+l^j •

k+. ak+l
+ <+

(t-1) -a•j)xk R (t) -a(j)xk 2- R(j)
b~j) it j(j

L b

and to the right bounda k(t), otherwise. We can rewrite (D.2.11)

a(j) < [b 2 (j) K+l(t) + R(j)] [Y3+ 1 (t) 4 YJ4 l(t -l)] + b2 ( j ) +l(t)

2R(j)

(D.2.12)
The right side of (D.2.11) is defined to be G(t) 03 (t) when b(j) # 0 and

*k k

(D.2.10) holds, as in (D.1.10).
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if b(j) 0 and we have

2Vkfkr j It] -_____ 1
2~ + 2 (t)) 0 (D.2.13)

-' 2 2 +~1 tj=
(~xkl) 2b (j)

*then for each value, the quantity that is to be minimized in

xkk

"Vk Ex.k~rk=jlt) ~ =) - 2) R xj > 0 (D.2.14)

k+lb

then the best xk. value in Aj Ct) is the left boundary, yj (t-1),
K4lk-i k+l

since the cost to be minimized in (D.2.3) increases withXk

(for fixed xsk). When we have

b k _ x~ ji ] Aj M 2a(j) R(j) x

bOk+l x]rkt] -b (j)

the best e~ eA3 Mt is YJ (t). Forxkl k+l k+l

- 2a(j) R(j) (..'
H +I~t) b 2(Mj)

any ~ 634  M t yields the same result in (.2.3) (for fixed '0

From (D.2.13) -(0.2.16) we thus get (D.1.11) D .1.12).
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D. 3 Proof of Proposition 8.2:

We first note that relationships (C.3.1) - (C.3.3) of

Lemma C.3.1 hold when both

i W(t) > -
(D.3.1)

b (j)

Aj >-R(j)
K1 b 2 j) (D.b2 3.2)

since the O's and O's are defined by (D.1.4) - (D.1.8) (which

are the same as (C.1.4) - (C.1.6)).

Let us assume that Vk+l(X Jrk j) is continuous at

y+(t) and that (D.3.1) - (D.3.2) hold for t and £= t+l. By
k+1

continuity

vt'R( " t+l,L
V (xt'lV (xksj) (D.3.3)

since we are driving to the same x+i value in each, with the

same cost. Hence from (D.1.4)

Gk(tt) = J(tt+l) (D.3.4)

Suppose that we also have

Vkl(xk+Inrk=J) < Vk+l (xk+llrk=j)

'k+1 k+1 ~

(D.3.5)
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That is

j I ^j2 (t+2) ()2 (t) y (t);k+l t+l k+l )(D.3.6)

Then by Lemma C.3.1 we have

63(t+l) < &J(t) (D.3.7)
k -k

Now (D.3.3) and (D.3.7) are together sufficient to guarantee that
vt,R( t+l, L

neither Vk (xk,j.) nor vk  (xj) can be optimal for any xk ,

since

' t,R (XI",J) > _t, U ( J
vk v k  |

t~lL t+l,U

Vk+ (xk'j)t>) th (xk'J)

for all xk . Thus for each Y 'l(t) at which Vk+l (krk=j) is

continuouswith (D.3.1) - (C .2) holding for t and Z t+l and

with (D.3.6) holding:

tu vt,R , tl,L( tlUrin i (xkj)' , k xk'j) Vi Xk'j) ' Vk x ')

tU( j) or t+l,U
-Vk Vx (XkIj) (D.3.8)

for each

This verifies (i) of Proposition 8.2.
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Suppose that (D.3.1) - (D.3.2) hold for t and = t+l and

A
Vk+l xk+ Jr -j) is continuous at y+' (t) but

Vlx k~lk k+1

~~a ^ A I "
-i- k+l(xk+llrk=j) (x k rk+1'j

kl k~ (k~lk~j  > Xk+l Vk+l kl= (D.3.9)

xk+l( J+l t)k+l (yJ+l

That is,

+1 .

" >+ (D. 3.10)

(t+l) +t)

Then by Lemma C. 3.1 we have

e6(t+l) > 03(t) o (D.3.11)k k

From (D.3.3), (D.3.11) we have that

vt,R (,j)_t+l,

Vt x v lV 'L(xk'j)

may be optimal for

(t) < a (j) x < ek(t+l)

Hence we have (8.53) in (i) of Proposition 8.2

Af-R (j)
(t) < -R(j) (D.3.12)

b (j)

then
k (t) G k (t) ,(D.3. 13)
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C.S given by (Dl. 0). Here

kI is never valid

hence (ii) of Proposition 8.2

Now suppose that (xk+1 r= is not continuous at

k+1(t). Suppose that
A "+-

(t) 1( (D.3.14)Vk+l([yk3+l(t)] 1J) < Vk+l([Yk+l~t]l ) (..4

That is, Vk+l(xk+llrk=j) has a discontinuous increase at y +l(t).

This can happen only if y3+l(t) is a form transition probability

j.((z, i 6 {l,...,v IV l , or an x-cost discontinuity pi(n),

n e {l,...,i-l} ,for some i e C.

Then clearly

t' (xk' j )  < Vk '(xk J) (D.3.15)

So in this case v- t+l,L(xj) cannot be optimal for any xk. However,

VkR (xk,j) may be. Similarly, if

k~+
UY (t) ]-I j) > ( (t)] 1Ij) (D. 3.16)Vk+l ([k+1 Vk+l ( [k+1

(which implies that is a form transition probability discontinuity(whih iplis tat k+1

or x-cost discontinuity, then

vt+l,L tR
kc (x'j) < Vk'( )

hence Vk t(kN ) cannot be optimal. Thus we need consider only

the candidate costs-to-go listed in the statement of Proposition 8.2.0
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D.4 JLPC One-Step Solution Details (for Proposition 9.1)

In this section we provide details for the computations in steps

3 and 4 of the constructive proof of Proposition 9.1.

Obtaining the Zk+ 1 grid (in step 3):

It is straightforward to verify that for each s = 1,...,j, and

t = ,..., 1 in (9.101) we have

min(a(s), max[yk+l (t)-z k+l ,(s-]] = max(a(s-1), min[y k+1 (t) - Zk+ l ,(s)]]

Lj (s,t), (D.4.1)

where the numerical value of each integration limit L1 (s,t) depends upon

Zk+ 1 as follows:

"(s) if Zk+l < 5 j t) k+ (t) -(s)

.- (s,t) k i(t) - Zk+l if AJ(s,t) < z < 6 (s,t) (D.4.2)
o Y(s-l) if z->BJ(s,t) - k+l(t) - (s-l)

The values of (A (s,t), B3($41,t): S k ,...?-i; tl,..., k+1 -I}

in (D.4.2) comprise a tentative partition of Zk+l. Given the grid points

(y3 (t)} and ta(s)} we obtain the tentative partition
k+1

{W() - ((-l), y(z)) k =i

where the p-I grid points are distinct elements of the set

{Y3 t M G(S) : +- S (D.4.3)
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and are ordered as follows:

- Y (o) < ¥(M < ... < Y - 1) < Y (10 =0

A. A.

To obtain the Zk+ 1 partition {q+l(t) : t=l,... I+ of (9.97) - (9.98)

we must make the evaluation indicated in (9.102), and add extra grid

points to (D.4.3) as needed.

Using (D.4.1) - (D.4.2) we can determine the limits of integration

in.(9.101) over each z interval in (D.4.3). We can then evaluate

Vk+l(Zk+llr -j) over each of these intervals A(Z), by (9.101). An
+1 k

efficient way to carry out these computations is to do them for

Zk+l 6 A(M), and then to successively calculate Vk(tk+ilrkJ)

over A(9,+l) from Vk(zk rirj) over A(Z) by adding or subtructing
k+l Zk+1 k-j

(as appropriate) those integrals in (9.101) whose limits change when

we move from A(Z) to A (Z+1.

That is:

A

1. Compute Vk+l (Zk+llIrk=j) over A(l). By (D.4.2), the

integration limits< J(s,t) are all equal to a(s). Thus

for all zk+l 6 A(), (9.101) becomes

vk~l~l

k+l k+l rkJ I ( ) Vk+l k+l-s=l ac(s-l)•
Zk+leA(l) (D.4.4)
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2. Compute V k+l(z-k+i rk=j Z k+j 6 A(Z+l)) from

k~l k lk.'-'.':Vk+l(zk+irki], Zk+l 6 A(t) as follows:

Sif ) = Aj(s,t*) for some s t in (D.4.2),

then the limit LJ(s*,t*) in (D.4.1) - (D.4.2) becomes

.- - Zk+l instead of 0(s ); consequently we add

ar(s A ,, ,

fO(S (v;s)[V (Z v ) - V (z +v;t )MdV
fk+1 k+l7tl k+l k+l

i,' k (t )-z (D.4.5)

A

to Vk+l (Zk+llr kj' Zk+l 6A(z).

if = () j'(s,t*) for some s ,t in (D.4.2),

then the limit LJ(s*,t * ) in (D.4.1) - (D.4.2) becomes

a(s -1) instead of l(t) - Zk+l; consequently we add

f (s -1) A *

W(v;s )[V l(zk+l+;t ) - Vk+l(zk+lv;t +l)]4V

YkJ (t*)-Z (D.4.6)
k+l k+l

A

to Vk+l(zk+llrkI, Zkl 6 A(k)),

Adding the integrals specified by (D.4.5) - (D.4.6) to
A

Vk+l(Zk+iIrk-i, Zk+l 6 A(Z)) yields

Vk+l(zk+llrki, zk+l 6 A(2+l)1. This is done sequentially

until V (zk+ JIr Zk+ 1 6 is obtained.
klk+l k1 'Z~

If, however, the JLPC control problem is completely symmetric about

zero, we need only follow this procedure for z k+ intervals to the
left of zero.
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3. Now we differentiate each V (z Irk , jk+1 k+1 Z+1 G A(Z~))

twice with respect to z k+l* A ?fl4e s~~ ro-tivo.1

we break up A(Z) into disjoint intervals such

thatVk~(zk+llrkj is convex or concave over each.

Following the three steps, we obtain the zk~ partition and

V (z [r =j) pieces described by (9.97) -(9.98).

k+l k+1 k

Solving the constrained-in-zk~ subproblems (in step 4):

The subproblems in (9.103) are solved as follows:
k+l

1. If V (xk,rkjt

~ 2 in (9.111) is
k+l

nonpositive over ^j(t then the optimal subproblem cost

V k(xk.r k=jlt) in (9.103) has the two-point structure of (9.107).

*From (9.108.) -(9.109), the joining point in (9.107) is given

by

k~t ~() 2 Yk+l(t1') + rkl(t)

A

z(

b2(i)[. kKJ Ct-I) z k+l =yk+l(t)J

4. [y, Ct-i) (
R(j) k+ (1

(D.4.7)
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2 A

2. If V Vk(xkrk~jt) in (9.111) is positive over A+t)

ca 2 k+
k+1

then we must solve (9.110) to obtain the Zk+I (as a function
t'u

of Xk) which minimizes (9.103). It is the optimal zk+1

(resulting in cost Vkx (Xk,j) in (9.106)) for those xk

values such that this zk+l is in J (t) (if any such xk

values exist).

Solving (9.110) to obtain zt and computing the joining
k+1

points 8 3(t), &J(t) in (9.106) may be quite difficult to do analytically
k 'kA

(depending upon the form of the function V (Zk;t)).
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D.5 Proof of Proposition 9.2

We begin by verifying 4(i) - (ii). We are considering the

solution of (9.113), subject to (9.114). The cost Vk(Xk,rk=J t) can

be written as a function of zk+l , as in (9.103). To find the

respet toZk~l k xk~lkoptimal z in Ak+l(t) we differentiate (9.103) twice with

respect to zk+l, as in (9.110) - (9.111). If for a given xk the

first derivative is zero (i.e. (9.110) is satisfied) for some
* *

Z z then we have (9.126) - (9.128) directly (with zk+l= z )
*

This z is the unconstrained optimal if the second derivative is
*

positive (i.e. (9.111) is satisfied) and if z is, in fact, in

.+lt). Condition (9.125) results in the satisfaction of (9.111).

The definitions for J t) and 0J(t) in (9.129)- (9.130) correspondk k
to zkt '  (xk,j) = z of (9.127) inside the interval A+W(t). Since

we have chosen the Zk+l partition so that (9.111) is satisfied
^j

throughout A k+lt) or not ai all, the "inactive constraint"

solution Zk+1 (xk,j) in (9.127) is unique. To verify that

(t) < 9 (t) for each t=l,...,' k+l in (9.131) we note that

k+1k+b j v (z;t) V+i(z;t) .

z=[y-i (t-1)]+ z=[¥Y + (t)]

(D.5.1)
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tince by (9.111)

S2 ^J (z:t)
2for all z C (Y' (t-1), Y 3 t))

z2 - + b2(j)

(D.5.2)

This completes verification of 4(i) - (ii).

We next establish items (1) - (3) of Proposition 9.2. Suppose

that (9.111) is satisfied for all z e A (t) (i.e., the second
k+l

derivative is positive), but that for a given xk the value of Zk+l
Aj

satisfying (9.110) is less than y+l (t-1). Then then best (lowest

cost) zk+ 1 in A (t) is on the left boundary as in (9.116), which
k~l k+l

is obtained with control (9.115) and results in cost (9.117). If,

however, the Zk+1 value satisfying (9.110) for a given xk is

greater than y+(t), then (9.118) - (9.120) apply. Here the
k~l

values of 81(t) and/or Gk(t) are given by (9.129) - (9.130).
kk

Now suppose that (9.111) is not satisfied as in (9.121). Then the

solution to (9.110) is not a minimum; the only choices of Zk+1 in
-,. .. Y ̂JA(-l j

+l(t) are the boundaries yk+(t-) and y+lt). In this case

the values of OJ(t) and/or OJ(t) in (1) - (2) are specified bytooft, t,R.
the intersection of viL (xk,rk-) and vk  (xk,j). This yields

(9.122) - (9.124) directly. Thus we have established (1) - (3)

of Proposition 9.2.

Items 4(iii) and 4(iv) of the proposition follow immediately.

Item 4(v) is a direct consequence of the relationship
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2 t,U2

~ ~ (x ~ ) 2 (j) ~ z ~ ~ )(D. 5.3)
22

Y-k k+l

kl k+1

For t-l and t=~ if

k~l k+l

Jci-J< kl <0 thxen as Iz
(a 2 zk+l1
k+l

we will have V3 1 (z 1 ;t) < 0, which violates the requirements

Ofl ~ k~ VklZklrkl

D.6 Proof of Proposition 9.3

To prove this proposition we first establish the following

relationship between 63t) 03(t and the slopesofV (

3j tU
at the points {y (t)}W for those t where v k exists.

Lemma D.6.1

For t and Z such that

2Aj
Vk1(z k , t) 2 R(j) > 0 (D.6.1)

2 2
Oazk~ b (j)

aV.,1k+l ~ 2Rj D62

22

Oaz )2b (J)k+1
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the following relationships hold:

1. ej(t) > eJZ) if and only if
k k

aV+ (Z ;t) aVI (z ;t) >2 R( ) k (Z- I)
k+i k+i k~l k+i > 2 () ~
aZk+l k+l b (j) -.

J~- (tl (^J(Zl)"

k+l = k+l Zk+4 k+l

(D.6.3)

2. &j (t) > &J(Z) if and only if
k k

v (z k.i ;t) avk~ (z k;Z) 2 R(j) ykq (M.
______ _____> k-ii

3Zk+l ( Zk+i b 2 (j) ^* 3
Yk+l(t)

z -Y ()z Myj (M L kii (.
k-i- k+l k-i- k-i-

(D.6.4)

3. & (t) > 6( ) if and only if
kk

AA

Zk+l ,.Zk+l ^ b2 ( j) ^j

(z ;t) v~ ((D.6.5)

This lemma follows directly from (9.129) - (9.130). It is a

generalization of Lemma C.3.1.
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Proof of Proposition 9.3, continued:

Suppose that Vk~ (z Ir =j) is continuous at Y t.Then
k k+1 k k+lt)

by (9.117), (9.120) we have

,R (~K~) =Vk (.K~) ,(D.6.6)

since

Now suppose that we also have

A.

k+1- k+1 ki-1 k+1
azk~ 4 aZk~ (D.6.7)

z =Y3 (t) Zk lYI()
k+1 +l 1~ k+1(t

as in (i) of Proposition 9.3.

Then by Lemma D.6.1 we have

e3 (t+1) < E&j(t) *(D.6.8)k k

Now (D.6.6) and (D.6.8) are together sufficient to guarantee that

neither V~I (x.k~j) nor Vj+i (x.k~i) can be optimal for any k

* . since

Vk (x'& > Vi (xkj)
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for all x.k (with equality only at k and k ,respectively.

a (j) a (j)

Thus for each z k = Y l(t) at which V kl(z klr k=j) is continuous

w ith (D.6.1), (D.6.2), (D.6.7) holding for t and Z =t+l;

{Vk (Xk'j), Vk (xk'j '
mintm, t+l,tJ Vi (x.k i) or

Then b Lenuu D.6(Dwe6hav

Vk (x.K'j)

Thfore we hve verifiesi of Proposition 9.3.

k*

Spoeta (D61 -(D62hodfortad2 ~ n

VkL 893-)i otnou tY~-t u D..)de o od
Thnb emaD6- ehv

e (.l >- .j . D..0



discontinuous at Y (t) with (9.141) holding then clearly (from
k+l

t,R t-IilL
(9.117), (9.120)) we have Vk (xk,j) < Vk (xkj). So in this

"" _ t+l ,L
case Vk  (xk, j ) cannot be optimal for any X. However,

V (xk,J) This verifies Proposition 9.3(iii); (iv) follows

analogously.

Thus we need only consider the candidate costs-to-go listed

in the statement of Proposition 9.3.

D.7 Proof of Proposition 9.6:

1. Differentiation of ts j) in (9.117) and tR
Vk (xkj n(917 n Vk (k~i)

in (9.120) with respect to xk yields (9.144) - (9.145)

for any xk where these actively-constrained costs are

optimal.

For any xk from which some vt'U( *,j ) is optimal,

Proposition 9.2(4) and

tU
Vit) k+l k+l
axk @Zk+1

Zk+l z tk+ 1

yields (9.144) - (9.145).

2. At joining points 6 - where Vk(xk,rk-j) is differentiable,

Uk(xkrk-j) and zkl(xk'rk-j) are clearly continuous,

from (1).
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3. At a joining point x.k=5 where the slope of

Vj (krj) decreases discontinuously, (9.144),

(9.145) yield Ci) and (ii) directly.

4. From 3(ui) we have that the mapping

xk~ k+l1xClk=j)

increases discontinuously at joining points where

Vk(x]Ir =j) is not differentiable, and from (2), the

mapping is continuous at other joining points.

Now between joining points, if the optimal cost

corresponds to hedging-to-a-point then clearly the

mapping is constant. if the optimal cost does not

correspond to hedging-to-a-point, then in such a

region

Vk(xJkrkj) k ~U~~j

for some t e 1,.. +1 Thus

b C (j)xj - JL . Vk(xk rk)
zk+1 (xkDr knj) a 2jk a(J)R(j)

2 al (z ;t)
t'U (j) k+1 k+lMZk+l 2Ckj'tkio) -a(j) xk 2a (j) R(j) a

t,
Zk+lZ (zkj)

(D.7.1)

895



Differentiating (D.7.1),

St,U( j b2 2^jZl t,Uk+lk = a(j) - +l (zk+l; t) (Xk kj)

xk  a(j 2R(j) (0 2k+l 2 3xk

mt,U.
kelZk+l(xk,j J)

(D.7.2)

which yields

tuLzk~ (xk'j) a b (j)

xk 2A (z ;t)

Zk' ll k~lL 2R(j) 2 klzWj

(D.7.3)

Now by (9.125) of Proposition 9.2, Vk* only exists when

z t)k+ + 2 R (j)

2 b2 > 0 (D.7.4)

Oaz )2b (j)
k+1

-t,U
Zk+l Zk+l(2k1)

hence

2 a 2+ (zkl ;t)
bW k+ l + 1 > 0
2R(j) 2

k+l (D.7.5)

t,U.Zk+lZk+l(x k J )
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From (D.7.5) and (D.7.3) we have

t,lU
3z k1(x kj)k+lXkJ > 0 if a(j) > 0

t,U
azk. 4 xKi < 0 if a(j) < 0.

Thus we have 4(i),(ii).

5. Item (5) follows directly from the monotonicity of the mapping

Xk Zk+l. (xkrk=)

in 4(i), since each candidate cost corresponds to driving

Zk+1 into a different region of values; if a certain candidate

were optimal over two disconnected intervals of xk values

then the monotonicity of the mapping would be violated.
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